PHYSICAL REVIEW E VOLUME 58, NUMBER 2 AUGUST 1998

Perturbation expansion in phase-ordering kinetics: I. Scalar order parameter
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A consistent perturbation theory expansion is presented for phase-ordering kinetics in the case of a noncon-
served scalar order parameter. At zeroth order in this expansion, one obtains the theory due to Ohta, Jasnow,
and Kawasak{OJK). At the next nontrivial order in the expansion, worked outlidimensions, one has small
corrections to the OJK result for the nonequilibrium exponerand the introduction of a new exponent
governing the algebraic component of the decay of the order parameter scaling function at large scaled
distances[S1063-651X98)10108-3

PACS numbsg(s): 05.70.Ln, 64.60.Cn, 64.60.My, 64.75

I. INTRODUCTION Thus, at this point, one does not have a theory which is both
smooth enough for treating defect dynamics and yet robust
Significant progress has been made in the theory of phas@nough to give nontrivial results for the nonequilibrium ex-
ordering kineticd 1] using methods that introduce auxiliary Ponenta.
fields that are taken to have Gaussian statistics. These theo- In principle, the task for the theorist in this problem may
ries well describe the qualitative scaling features of ordering€em obvious: Linearize the order parameter equation of mo-
in unstable systems. The methods deve|oped by Ohta, Ja%.on, and forma”y arrive at a Gaussian field theory. Then do
now, and Kawasak{OJK) [2] and the theory of unstable perturbation theory in the remaining nonlinearity. This is the
growth (TUG) [3] each have appealing aspects and sepatell known path in conventional field theory. Th(_a problem,
rately give good descriptions of different aspects of the orhowever, becomes clear when one looks at the simplest form
dering problem. A major lingering question is why thesefor the equation of motion satisfied by the order paramgter
methods work as well as they do, and how they can be redD dimensionless units:
onciled and improved. Thus there has been a sefatel)
for a field theory description where to OJK or TUG is the Y S
zeroth-order approximation in some systematic expansion. E:l/f—llf +Vey. (1)
Such an expansion is presented in this pd@érlt has the
OJK result as its zeroth-order approximation. More impor- ) ) ) )
tantly it indicates how one goes forward to improve on thesdt i clear from this form that there is no dimensionless non-
theories. The case of a scalar order parameter is treated {#€ar coupling in which to expand. If one expands in the
this paper. These ideas are generalized in a companion pagniinear termy®, one obtains exponential growth in time
to the case of the-vector model, and systems with continu- (the Cahn-Hilliard theoryf14] in the case where one has a
ous symmetry in the disordered state. conserved order parameltevhich, as a zeroth-order approxi-
The problem of interest is the restoration of equilibrium in Mation, does not include any of the basic qualitative features
a system rendered unstable by a rapid temperature quench@bthe long-time ordering. The reason is that the nonlinearity
a regime where the final state corresponds to a broken di¢s €ssential in stabilizing the growth in the long-time limit.
crete symmetry. The ordering is controlled in this case by théndeed the combinatio— 4> must become small as the
decreasing area of domain walls separating the competingystem orders. A mean field theory by Langer, Bar-on, and
final degenerate states. The two coexisting theories, the OJiiller [15] is an improvement, but is ultimately flawed by
theory and TUG, have been useful in understanding certaithe inability to treat the separation of the two characteristic
aspects of this problem. TUG has led to nontrivial expreslengths in the problem. The dominant scaling lengitt)
sions for the nonequilibrium exponent defined in detail 9rows algebraically with time, and characterizes the average
below, which are in good agreement with values known exSeparation between defects in the system. The other length is
actly or from simulation data. However, as discussed by Mathe equilibrium correlation lengthe . Clearly, at sufficiently
zenko and Wickharf8], in the TUG approach the auxiliary- long times, L(t)>&g. This two-length problem was ad-
field correlation function exhibits a nonanalytic structure atdressed by Mazenko, Valls, and Zannétté] (MVZ), who
short-scaled distance which leads to unphysical results whedrgued that the solution to this problem is to separate the
used in calculations of defect densititE®,10] and defect order parameter fields into a peak contributionr and a
velocity distributions[11,12 for systems with continuous fluctuating contributiontju, ¢= o +u. Theno is associated
symmetry in the disordered states. More recently, it wagvith ordering on the length scal&(t), andu with equilibra-
shown[13] that the OJK theory can be derived from thetion on the length scal&g. In the structure factor ther
exact continuity equation for the defect densities for pointvariable is identified with the growth of a Bragg peak with
and line defects, and that it leads to smooth physical resultidth L~*(t), andu is identified with the Ornstein-Zernike
for defect properties. On the other hand, the OJK result isontribution with width governed byz*. One reason for
only compatible with rather trivial results for the expon&nt  going over to the auxiliary-field method is to insure that the
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Bragg peak grows with the proper weight which correspondoint cumulantG,, which enters the determination of the

to the equilibrium average of the order parameter squared.order parameter correlation function at lowest order, is of
The work of OJK predated that of MVZ, but fits into the O(0), asexpected. The four-point cumulant is©{1), and

picture developed there. OJK ignored the fluctuations ( SO on. This has the consequence that any function of the

=0), and assumed is a function of a Gaussian auxiliary auxiliary field m can be expressed in terms of these cumu-

field which is diffusive in nature. There have been a numbef@nts, and evaluated in perturbation theory.

of subsequent papefd7-19 clarifying the nature of the Tu_rmng to the question of thg existence of a small param-

OJK result. More recently, in the work of Bray and Huma- e_ter, _|t appears that the mosj[ direct conngctlon of the expan-

yun[4], there has been an effort to derive the OJK theory inSion in ¢, to a more conventional expansion parameter is to

a systematic fashion. This approach will be discussed beloW’® 1h expansion in ther-vector model. This will be dis-

in Sec. Il cussed in detail in paper Il in this series. This expansion does
An alternative implementation of the ideas of MVZ was NOt appear to be related to adléxpansion[23]. Thus the

carried out in the TUG. In this case, as discussed below, thB'ethod developed Ref24] here has more in common with

mapping of the order parameter onto an auxiliary fields r_neth_ods in crmca} phenomena, where one works in the spa-

motivated by the idea thah measures the distance to the tial dimension of interest, as compared, for example, toethe

nearest defect. Coupled with the assumption that the auxiXPansion about four dimensions.

iary field is Gaussian, the equation of motion satisfiedrby

enforced, and one obtains a theory describing most of the Il. OVERVIEW

features satisfied by the order parameter scaling function.
All of these theories with auxiliary fields satisfying

Gaussian statistics have been lumped togetheBasssian The system studied here is the domain-wall dynamics

closure approximationg20]. It has been clear for some time generated by the time-dependent Ginzburg-Landau model

that we need to have theories which go furtft,22. Pre-  satisfied by a nonconserved scalar order paramgter)

vious efforts at post-Gaussian approximatigris6] had

some success, but are difficult to control. oy _OF bk 5

How does one construct a perturbation theory expansion o sy T L4, 2

for the auxiliary fieldm? This theory will be unusual since,

on averagem is growing with time. Thus standard polyno- whereI" is a kinetic coefficientF is a Ginzburg-Landau

mial nonlinearities irmwould be a problem. As discussed in effective free energy assumed to be of the form

Sec. lll, there are some difficult technical problems in devel- c

oping on expansion method which is self-consistent. The _ d.| = 2

resolution to this problem is first to choose the proper intro- F_f d r( 2 (V= +V( l’lf))’ &)

duction of the auxiliary fieldn, and then organize the treat-

ment of the associated nonstandard nonlinear field theorphere c>0, and the potentiaV is assumed to be of the

through the introduction of an expansion paramesgr At ~ Symmetric degenerate double-well form. We expect only

zeroth order in this parameter, one obtains the theory due t&ese general properties Wfwill be important in what fol-

0JK, and at second order one finds expressions for the colows. 7 is a thermal noise which is related © by a

rections to the nontrivial exponents characterizing the orderfluctuation-dissipation theorem. We assume that the quench

ing in these systems. This parametgy is associated with IS from a high temperatureT(>T), where the system is

the unusual nature of the nonlinearity in the problem. Insteadlisordered, to zero temperature where the noise can be set to

of a polynomial nonlinearity, one has tisign of the field ~ 2zero(n=0). It is believed[1] that our final results are inde-

giving the driving nonlinear terms in the equation of motion Pendent of the exact nature of the initial state, provided it is

for the auxiliary field. This expansion i, appears well @ disordered state with short_-ranged correlations. _

behaved order by order in perturbation theory, and in some If we rescale lengths and times we can put our equation of

ways is similar to the bare expansion in the quartic couplingnotion in the dimensionless form

in ¢* field theory. One has, for example, the possibility of ,

resummation or use of renormalization group methods. We A yY(D)=—-V'[¢(1)], 4

appear to be fortunate in this case since lower-order approx{/—v

mations appear to work well, give reasonable results for

anomalous dimensions, without the need for extensive reor-

ganization. One encounters a rather straightforward exponen- A(D)= T vi 5)

tiation of logarithmic divergences. Unlike in critical phe- !

nomena, the logs appear for all dimensionatityn this case s introduced along with the shorthand notation that 1 de-

they are driven by internal time integrations. _ _notes ¢4,t;). Equation(1) is just the special case of the
A key assertion in the theories developed previously is)qtentialV= —LlyRy iyt

that the auxiliary field can be treated as having Gaussia
statistics. It should be understood that a theory with this fea-
ture at zeroth order must have the property that all of the
higher-order cumulants for the fielsh must vanish at this It is well established 1] that for late times following a

order. It is shown here that indeed thgoint cumulant is of quench from a disordered to an ordered phase, the dynamics
O[(n/2) —1] in the expansion parameter. Thus the two-obey scaling, and the system can be described in terms of a

A. Setting up the problem

here the diffusion operator

B. Summary
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single growing lengthL(t), which is characteristic of the TABLE I. Values of exponenh from the current theory, OJK,
spacing between defects. In this scaling regime the ordeand the TUG.
parameter correlation function has a universal scaling form

Dimension Theory OJK TUG Best
C(12=((1)(2))= Y3 F(x,t, /1), 6
(12=(H(L)§(2)) = Y3Fx 1 1) ®) Y P — "
where ¢, is the magnitude of the order parameter in the 2 1.108... 1 12887  1.246:0.02
ordered phase. The scaled lengthis defined as>?=(F1 1.582 ... 15 16726 1.8380.2
Large dr2 dr2 d/2 dr2¢

—Fz)/L(T) where, for the nonconserved order parameter
case considered here, the growth law goed 66)~T2  3Exact; see Ref/1].
whereT=3(t;+1,). In the case of the autocorrelation func- ®Numerical results from Ref26].

tionry=r,=r we have[25,26] “Best guess.
> > \/tltz) A M d
) d(r,ty))~ : 7 29d AL I i
((r,t) g(r,t5)) ( T () 20+ 0°2%| Kat iz | =1+ 3, (14)
where\ is a nontrivial nonequilibrium exponent, and either 41
t, or t, is much larger than the other. At equal times and [t
hort-scaled dist Kg= | dz L (15)
short-scaled distances, o [(1+2)(3-2)]
f(X)Ef(X,l)Zl—a|X|+~'- . (8 and
This nonanalytic behavior as a functionfs indicative of 1921 1 72dp)
Porod’s law[27], as conventionally given in terms of the MdzJ' dz i~ 2 Tid (16)
Fourier transform o [1+Z] (d)
FQ)~Q~1+d (9 The exponeni governing the algebraic component of the
large x behavior is given aO(2) by
for a large scaled wave numbg. That all of the higher-
order terms in Eq(8) are odd in|x| is known as the Tomita _ 0220+1| K 4 Mg (17
sum rule[28]. It appears, as we will discuss below, that the v=o a7 gdr+1)”

largex behavior can, with proper definition &f be put in the
form At lowest order, one has the OJK results-4 and v=0.
While K4 and w can be worked out analytically for specific
1 — (12 values ofd, the expressions are not very illuminating. Nu-
F(x)~ ;e (10 merical values fon, » and w are given in Tables | and I
along with other results for comparis$&0].

wherev is a nontrivial subdominant expon€e9].
The main results determined in this paper is an explicit lll. REVIEW OF AUXILIARY FIELD METHODS
determination ofF(x,t,/t,) in perturbation theory. At zeroth

. How can one organize this problem in terms of rtur-
order, we obtain the OJK result ow can one organize this proble terms of a pertu

bation theory expansion? Let us consider first the most direct
2 method since the exercise is instructive and suggests other
F(x,ty/ty)= —sin‘l[d)O(tl,tz)e‘(l’z)xz], (11) approaches. Let us ignore the fluctuation fialéh the de-

m composition of the order parameter field, and replace the
order parameter fields with an auxiliary fieldm via the

mapping
A
¢o(t1,t2)=<@) 0, (12) = o[m], (18)

where g[m], as in the TUG, satisfies the Euler-Lagrange
wherehg=d/2 andvy=0. Going to next orde©(1) in the equation for the associated stationary interface problem
expansion, discussed in detail in Sec. X, we find no change
in the indices A and », but quantitative changes in TABLE II. Values of exponenw from the current theory, OJK,
F(x,t1/t,). At O(2), both\ andv are shifted. The exponent and the TUG. The last column gives the values of the quantity
\ is given atO(2) by

where

Dimension Theory OJK TUG )
d
_ 4 ,2'Mg 1 1156... 0 1 0.460L . . .
AN==+w , (13
2 3d/2+1 2 1.249 ... 0 057%4... 0.687 ...
3 1.372. .. 0 0.34®2 ... 0.9067...
where the dimensionality dependent quantitiesK,, and Large d(3-22) 0 0 2(y2-1)

My are determined by
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d2o It is not clear how to obtain systematic corrections to Eq.
—=0,=V'[o[m]]. (199  (26). Consider Eq.(24) from the point of view of dimen-
dm sional analysis. Sincen~L, andA~L 2, one has that the

left-hand side Eq(24) is of O(L 1), while the right-hand
side is ofO(L). The only way that the right-hand side of Eq.
(24) can be ofO(L 1) is if there is an additional constraint,
given by Eq.(25), that is enforced at all orders. Formally this
(20) reduces to the statement that the nonlinear interaction

In this equationm is taken to be the coordinate. It will gen-
erally be useful to introduce the notation

d’o

dm’’

g,=

V(L)=m(1[1-(Vm)*]- m(1) (27)

A key point in the introduction of the fielchis that the zeros
of m locate the zeros of the order parameter and give the

positions of interfaces in the system. Locally the magnitudgyst |ead to self-energy corrections which areQgfL ~1).
of m gives the distance to the nearest defect. As a systee to internal pairings of th&m terms in such an expan-
coarsens and the distance between defects increases, the tyfibn  this constraint cannot be enforced order by order, and
cal value ofm increases linearly with.(t). _ one arrives back at the dimensional analysis argument dis-
Inserting the mapping31] given by Eq.(18) into the  ¢yssed above. Thus the assumption given by(E5).is not
equation of motion for/ given by Eq.(4), one finds, after  self-consistent without further developméBe].
using the chain rule for differentiation, an equation for ©npe ends up concluding that then(Vm)?2] nonlinearity
m(1): is causing the technical problems and the OJK theory is not
_ ) the zeroth-order solution of this probleas posed Since
o(DAMM(D)=-ox(D[1-(VM(1))7]. (2D there is reason to believe that the OJK theory is a good

. . . : approximation of the original problem, then one might con-
To o_btaln an |dea}1 of the_nature of this equation, take thec:Iude that the role of them(Vm)?] nonlinearity is technical
special case of @" potential, where one can solve for the

maooing. analvtically and obtain the usual interfacial kinkand not crucial, and one should reorganize the calculation so
forr?wp 9 y y that it plays a less prominent role. Indeed it is useful to turn

the argument around, and suggest that it isc¢hen] nonlin-
earity in Eq.(23) which is important in the equation of mo-
tion for m, and that its role should be emphasized.

Let us back up a bit. Suppose, instead of the rather rigid
mapping given by Eq(18), we follow MVZ and write

L2(ty)

o[m]=tanHm/+2). (22)

It is easy to show that for this particular potentiat,
=—\200, , and the equation of motion fan can be writ-

ten as Y=o m]+u[m], (29)

A(D)m(1)= 2 (m(1))[1-(Ym(1))?]. (23 whereg[m] is still the solution to the Euler-Lagrange equa-
) ] o ] ~ tion (19) andu[ m] is to be determined. Let us substitute this
The left-hand side looks like the diffusion equation, while mapping into the equation of motion for the order parameter,
the right-hand side has two types of nonlinearities. The firsf;se the chain rule as in leading to E83), and obtain
nonlinearity iso,(m) which looks like sgnf) in the bulk.

The second nonlinearity is given by thEr)? term. Work- A(L)u(1)+o1(1)A(1)m(1)
ing along these lines, Bray and Humayj#] made the as- , )
sumption that one can make a cleaver choice of the potential =V o) +u()]+ox(HIVMD)]%. (29

and replace- o,(m)/o1(m) by m, and then work with the

; ! Notice that the perspective is different here. This can be
equation of motion

regarded as an equation for the fialdWe then have the
ADm(D) =m(DI 1= (Vm(1)2]. 24 freedom to assume than is driven by an equation of the
(L)m(1) (DI~ (Vm(1)] 24 type given by Eq(23). However we now choose this equa-
This polynomial form looks promising . If one makes the tion such that we can find a self-consistent expansion about
assumption the OJK result. To begin, we assume this equation of motion
is of the form

(29 A(1)m(1)=£(t)o(m(1)). (30)

Then this is just Eq(23) with [1—(Vm)?] replaced by the
then the resulting linearized equation foris given by time-dependent quantitg(t).
From dimensional analysisi~L, A~L 2, ando~L°,
K so é~L 1. These restrictions are very important. Using Eq.
2t m(1). (260 (30) in Eq. (29) for u leads to an equation of motion for the
Y field u(1):

This equation is formally the same as the one we will find ADu(1)=—V'[o(1)+u(1) ]+ ox(1)[VM(1)]2
later in the zeroth-order theory developed here, and does
corresponds to the OJK theory. —o1(1)&(t)) o(m(1)). (39

—(V 27~ ,
[1- M~ 5

ADm(1) =
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The most important aspect of the solution of the last equation V'[o+u]l=0,(Vm)?. (39

for u=u[m] is that

The usefulness of this equation is that it allows us to express
the equation of motion for the order parameter, in the bulk,

Indeed, as far as the universal properties are concerned, s terms of the fieldm,
is almost all we need to proceed. To understand that we can
construct a solution for u with this property let us consider
the special case where we have/apotential. The equation
for u is given then by

lim . u[ M]=0. (32

Ay=—a,(Vm)Z2 (39

We will demonstrate the usefulness of this result in Sec. XI.
Our picture therefore has tha field driving the order pa-

Au+(302—1)u+ 30U+ ud=—g,[1— (Vm)?]- o, 0. Eggr)]eter and then field satisfying the nonlinear equation
I_n the limit of Iarge|m!, the deriv_atives ofr go exponen- IV. FIELD THEORY FOR AUXILIARY FIELD
tially to zero, and the right-hand side of E§3) is exponen-
tially small. Clearly we can construct a solution fowhere Let us consider the field theory associated with the equa-
it is small, and linearize the left-hand side. Rememberingion of motion form(ﬁt)_ Our development will follow the
that =1 away from interfaces in the bulk we have standard Martin-Siggia-Rog#SR) [33] method in its func-

tional integral form as developed by DeDominicis and Peliti
[34]. The analysis begins with the basic equation of motion
for the field m given by Eq.(30). In the MSR method the
field theoretical development requires a doubling of opera-
tors to include the field which is conjugate tan. We also

organize things so that the initial fiemo(F) is also treated
2u=—o,[1—(Vm)?]. (35 as an independent field. Thus it is assumed tinét zero for

_ . t<t,, and one must add a teréift; —to)mo(r,) to the right-
We have dropped the term proportionalg(d) since it van-  pand side of Eq(30).

ishes more rapidly than the other terms at large times. That Following standard procedures, averages of interest are

the u field picks up a mass in the scali_ng limit can easily t_’egiven as functional integrals over the fields M and my
seen to be a general feature of a wide class of pmem'al\ﬁ/eighted by an actior:

whereq§=v”[a= *+ i43]>0. We then have on rather general
principles that the fieldi must vanish rapidly as one moves  (m(1)m(2)---m(n)M(n+1)M(n+2)---M(n+/))
into the bulk away from interfaces.

One expects that the explicit construction wfs rather
involved, and depends on the details of the potential chosen.
If we restrict our analysis to investigating universal proper- A M.MO)
ties associated with bulk ordering, we will not need to know XM(n+1)M(n+2)---M(n+/)e rm™HmoZ,
the statistics ofi explicitly. If we are interested in determin- (40)
ing interfacial properties then we need to known some
detail. Thus, for example, if we want to determine the correswhere
lation function

Au+2u=—o,[1—(Vm)?]—0,& sgnm). (34

Notice on the left-hand side thathas acquired a mass-2),
and in the long-time long-distance limit the term wheres
multiplied by a constant dominates the derivative terms:

= j DmDMDmym(1)m(2)- - -m(n)

C2(12)=([¢*(1)— Y31 ¥2(2)— Y1), (36) Z= f DmMDM DmgelmM-Mo), (41)

we will need to know the statistics of the fieldHowever, if
we are interested in quantities like

C(12, ... n)=(P(D)g(2)- - - (n)) (37 A(m,M,mO):—ijdlM(l)

where the points 12 .. ,n are not constrained to be close
together, then we do not need to knawin detail. Why is X[A(L)M(1) = &(1)a(1)— o(ty—to)mg(1)]
this? Consider, for example,

C(12=((D)(2))=([o(D)+u(L)][a(2)+u(2)]).

The point is that because the fiald1) is nonzero only near Xmo(r2), (42
interfaces, the averagai(1)o(2)) is down by a factor of

1/L2 relative to{co(1)o(2)). Out in the bulk we can use Where we use the notatiohd1=[dt;d’; , and where we
dimensional analysis to make the following estimates:@ssume, as is appropriate in this case, that the initial field is
(Vm)2~0(1), o,~O(L"2), 0,£(t)o~O(L"3), and Au  Gaussian and has a variance given by

~0O(L™*%), whereé~L 1. Using these results we find that ) ) o

the equation of motion fou can be put into the form (Mg(r)mg(ry)y=g(ri—ry). (43

The action takes the form

- %f ddrlf d%romg(r)g H(ri—ry)



1548 GENE F. MAZENKO PRE 58

We will not have to be very specific about the form of the ¢ ~

initial correlation functiong. It will be very convenient to WAT(vaamO):i[A(l)M(1)+§(1)UM(1)]+h(1),
generate our correlation functions as functional derivatives in

terms of sources which couple to the conjugate fields. Thughere we have introduced the quantities

we introduce

~ _i 5
S[h,H]=epr difh(D)m(L)+H(D)M(1)],  (44) AD=50+V1
(47)
and define om(1)=01(M(1))M(1).

Finally we need the derivative
Z[h,H]=f DmMDM DmeA MM Molg h H]

5
~— Ar(mM, mg)
= f DMDM Dmgeht(mM.mo), (45) omo(1)

o e | ade 1 -
where the total action is defined =iM(ry,to) fd rag™ ~(ry—ro)mp(ra).

Inserting the results of taking these derivatives into the av-

AT:A+I difh(Lm(1)+HDMD)]. (46) erages, we obtain our fundamental equations:

tTitrimeesfundamental equations of motion are given by the iden- —i[/~\(1)<M(l)>h+5(1)<0M(1)>h]=h(1) @9
ILA(D)(M(1))h— &) (o(D))n
f DmDMDm, eht(mM.mo) — g
oM(1) — 8(t1—to)(mo(1))n] =H(1), (49)
Ar(mM,mg) — and
f DmDMDm, sm(1) e 0)=0,
i<|v|(r”1,t0))h:f dr,g 4 (ry—r){me(r))n.  (50)
j DMDM DM D eAr(mM.Mo)— 0,
0 The last equation allows one to solve for the average of the
which reduce to initial field in terms of the MSR fieldn,
é - - - -
MAT(m!Mva) hZO, (Mo(ro))n=i| d%29(ri—ra){(M(ra,to))n. (59

Equation(49) can then be written in the form

o
—A M, =0,
<5m<1> r(m m°)>h LA(L(M(L))n— EL)((1))r]

R — =— f d211 Vi +H
< émo(l) T( Y 0)> h ’
where the Subscrim indicates that the average includes theWh '

source fieldh andH:

Mo(12)=8(t; —t)) S(t1—to)g(F1—r5). (53
j DmMDM Dmgeht(mM.mo) - All correlation functions of interest can be generated as func-
N = ) tional derivatives of{m(1)), or (M(1)), with respect to
G Z(h,H) h(1) andH(1).

In the limit in which the source fields vanish, each term in
the two fundamental equations vanish. Therefore, it is de-
rivatives of these equations which are of interest. Taking the
functional derivative of Eq(48) with respect tch(2) gives
the equation for the response function

Taking the functional derivative with respect tojust gen-
erates the original equation of motidiEqg. (30)] with an
initial condition and a source term

5
S () AT(mM.mo) = —i[A(L)m(1) ~ &(1)o (1)

)
— At~ to)mg(1)]+H(1). Gum(12= 5oy (M(D)n, (54

The functional derivative with respect tois given by with
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|~ Nom(L)n| B st
—i A(l)GMm(12)+§(1)T2) =48(12). (59 Qn(12...n)=¢(1) 5h(n)5h(n_1)“_5h(2)<0(1)>h-

(64)

Taking the functional derivative of E¢52) with respect to
H(2) gives With this notation the equations determining the two-point
functions can be written as

ilA(1)G (12)—5(1)M ~ 2
mM oH(2) —i[A(1)Gum(12 +Q2(12)]= 5(12), (65)
- f dlo(19Cum(32+ (12 58 j[A(1)6,(12) - Qx(12)]=- f A1 11o(11) Gyr(12).
Taking the functional derivative of E¢52) with respect to (66)
h(2) gives We see thaGy,  mandG,, m are coupled.
The point now is to show that there is a consistent pertur-
i[A(l)G (12)— £(1) 5<‘T(1)>h} bation expansion where the higher-order cumulants are also
mm . . .
oh(2) of higher order in some ordering parameter. To get started

we need to expres®,(12) andQ;(12) in terms of the fun-
= —f d3IIH(13)Gym(32). (57) damental cumulants of tha field. The first step in this di-
rection is to show that these quantities can be expressed in
terms of the probability distribution

o (s-m(1)sh.H)
Gr(12) =Gy 21). (59) Ph(x,1)=(o6=m(1))n= Z[h.H]

Note that Eqs(55) and (56) are redundant because of the
relation

(67)
Clearly we can go on and generate equations for all of the ) ) .
cumulants by taking functional derivatives. Let us introduceWhere the averages without the subschipre weighted bA
the notation thaG, A (12.. .n) is thenth-order cu- not A;, and the dependence on the source fields is explicit.
107200 n i
mulant for the set of field8A; A, . . .. A}, where fielda, | Ne average over(m) can then be written
has argumentl), field A, has argumeng2), etc. This nota-

tion is needed when we mix cumulants withandm. As an (a(m(1)))p= f dx o(X)Py(X,1) (68)
example
O &m@)y, and
Cummnd 1234 = SH sh2yon3) Y
Qu(D= [ dx &Py D). (69
As_ a shorthand for cumulants involving oniy fields, we
write Evaluation of Q;(1) is only slightly more involved. We
o1 have, using Eq(47), that
G,(12---n)= — (m(1))p.
oh(mahtn=1)--- an(2) 6o (OWDR=(MDeim)),
1 )
g;e equations governing thgh-order cumulants are given =m M(ol(m(l))S[h,H])
_ R B 1
—i[A(1)Gym  m(12...n)+Qu(12...n)]=0 (61) = Z[h.H] 3H(1) Z[h'H]de o1 (X)Pr(x,1)
d S
an = <M(1)>h+—6H(1)U dx o¢(X)Pp(x,1). (70

i[A(1)G,(12...n)—Qn(12...n)]
. . . Using this result in Eq(63) with n=1,
=—f dily(11)Gym. m(12...N). (62)

Qu(1)= f dx £(1)a(X)

é
M(1) +—}P (x,1).
The Q’s are defined by < In SH(L)| "
. sh1 Then any perturbation theory expansion feg(x,1) will
Qn(12...n)=§(1) sh(msh(n—1)---oh(2) (om(Ln, lead immediately to an expansion 1@ (1) andQ,(1). We
(63 can then obtain@n and Q,, by functional differentiation.
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V. PERTURBATION THEORY EXPANSION and
The perturbation theory expansion f(x,1) is straight-
forward. Using the integral representation for #héunction Q(ZO)(12)=J dx £(1)a(x)
we have
dk 2
dk xf—e"kxlsz(lZ)e‘(l’z)k (1
Ph(x,l)zfze"”@(k,h,l) (71 2
where we have defined, in zero external field,
where
— 2
<D(k,h,1)=<e”<1))h, (72) 52(1)_G2(11) <m (1)> (81)

There are several points to make here. Let us begin with the
separation of the fact@f(1)o(x) into a piece which contrib-
utes to the bulk universal properties and a part which does
not. Note that in general we can writgx) in the form

andH(1)=ikm(1) . The average of the exponential is pre-
cisely of the form which can be rewritten in terms of cumu-
lants:

oo 1 ~
®(k,h,1)= exr{ 2}1 565;7)(1) , (73) (X) = thoSgn(x) + o(X), (82

where i is the bulk ordered value of the magnitude of the

order parameter, and(x) goes to zero exponentially |
—oo, For they? potential yo=1, and

whereG{?(1) is thesth-order cumulant for the field(1).
SinceH(1) is proportional tan(1), these are, up to factors
of ik to the sth power, just the cumulants for the field:

G¥(1)=(ik)G4(11 ... ). (74)
H e2Xl1]| (83

~ 2
o(x)= —Sgﬂx){—

We can therefore write

= ks This means tha©{?(12) can be written as the sum of two
q)(k,h,l)zexp[z —~ Gs(11...1]. (75)  pieces:
s=1 .
2(12)=QP* (12 +QP¥V(12), 84
Consider first the lowest-order contribution@,, which Q" (1= 7129+ Q2712 69
does not vanish with the external fieldgH: where
1) (0B) _
Q(12)= f dx §(D)o(X) groaePrx D). (76 Qe (1271412 ®9
k .
We will assume, as we will show self-consistently, that in xf dx sgr(x)f d_ikeflkxef(l/Z)kZSz(l)
zero external fieldnth order cumulants are of orden/R) 2m (86)

—1 in an expansion parameter we will develop. Expanding
®(k,h,1) in powers of the cumulants witi™>2, and keeping and
terms up to the four-point cumulant, we obtain

1 a1 ) QPN(12)=G,(12) f dx &(1)a(x)
Pr(x,1) = 1—563(111)§+ 564(1111)d—x4+... 5
X PP (x,1) (77 X f 5 ike ke~ (12D,
where In both contributions we have the integral
dk .
Pﬁo)(x,l)=fECDO(k,h,l)e""X (78) J' %eikxike(lIZ)kZSz(l):_if %efikxef(llakzsz(l)
27 dxJ) 2«
and d
= 5((1)0()(11)1 (87)
CIDO(k,h,l):eikGl(De‘(l/Z)szZ(“). (79)

Then, after taking the derivative with respecti®), setting where®o(x,1) is the Fourier transform abo(k,h=0,1):

the external fields to zero, and neglecting all cumulants with dk CX2I[25,(1)]
n>2, we obtain Dy(x,1) = f _e—ikxe—(1/2)k282(1): e _
2m V278,(1)

Dy(k,h=0,1)=e (V2K*SAD), (80) (88)
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In evaluating Q®V(12) we can take the derivative of dK. o i
®y(x,1) and expand in inverse powers$i(1) to obtain, to ‘/’p(l)EJ dx sgr{x)J ﬁ'k e D(k,1)
leading order,

zzf %kzpe—u/z)kzsz(l):( 2 d ) bo(1),
QN(12)=6,12) [ dx EDFH0 = 2m 45(1)
V2rSiA(1) (92)
where it is crucial that-(x) vanish for largex| so that thex ~ where we have used an integration by parts in going from the

integral exists. Turning t@(ZO'B)(12), we have first to the second line and defined

dk . 2
¢o(1)=2f 28 =N o 93

In this case we integrate by parts in the integral ovend £ 1 term in the ; ; A
- : perturbation theory expansion@gror Q,
use @/dx)sgni)=25(x) to obtain will be proportional to factors of,. The perturbation ex-
(0B)(12) = £(1) hnGo(12) 2D (0.1 pansion is ordered by the sum of the labelsn ¢,. Thus a
Q27 (129=8(1)¢0Go(12)200(0.D contribution with insertionsp, ¢,¢,, each factor typically
associated with different times, is 6f(4). Weshall refer to
—= (89 this expansion as the expansion It should be emphasized
mSy(1) ; o : .
that at this stage that this isfarmal expansion. At orden it
The key observation is th@P"(12) is down by a factor of IS true thatp,~L 2P which is small; however, it will be
1/L2 relative toQ(ZO'B)(lZ). It should be clear that this is a Multiplied, depending on the quantity expanded, by positive

general result which will hold order by order in perturbation f@ctors ofL(t) such that each term in the expansiondp

theory. As far as the bulk ordering properties are concernef@s the same overall leading power with respedt(ig).
we can replaces(x)— osgn) . Thus we could have To see how this expansion works let us consider first the

started with the equation of motion for the figtdl two-point quantityQ,(12), defined by

A(1)m(1)=&(1)hosgnim(1)) (90 Q,(12) = fdxg(l)sgr( X) 5;((2)) (94)

d(I) 1
T ax o(X, D) |.

QYB(12) = £(1) ¥oG,(12) f dx sgn(x)

=£&(1) hoGo(12)

if we focus only on bulk ordering properti¢85].
Turning to the other nonlinear quantiy,, we have, in  Using Egs.(71) and (75), and taking the derivatives with

general, respect tch(2), wefind, in the case of zero external fields,
- dk .,
0,(12)= | dx &D)ry(x) Qy(12)= 1)f dx sgr(x)f & M (k =0,
1) » (ik)2s*1
X Gmm(12)+<M(1)>hM 2 Zsi o2l 12. (95)
52
+ Sh(2)R (1) Pn(x,1). (91 1‘S'ir|]§e all é)dd cumulants vanish in the case of zero external
ields, an
Clearly, term by term in our expansion we will find that the w 528
leading contribution comes fromr,(X) — o2 5(x) with the ®(k,h=0,1)= E (—D% L s,(1) (96)
remaining terms leading to contributions which are of higher &s1 o (29)! s
order in 1L. We therefore need only consider
where
Qz(12)=§(1)¢of dx 25(x) Sy(1)=Gpg(11. .. D). (97)

Let us define the set of vertices

o
X GMm(12)+<M(1)>hM
52

k _
vp(l)zf dx sgr(x)f;j—ik%“e'kch(k,hzo,l),
B o

5h(2)6H(1)

Ph(X,l) (98)

if we are only interested in the bulk universal properties. which reduces, after following the same set of steps in re-
A key observation is that, as we analyze contributions taducing the original expression fab,, to

Q, or Q,,, we will find that each term consists of products of dk

correlation functions and response functions with legs tied _ J_ 2p _

together by factors defined by V(=2 wk ©(k,h=0.1), (99



1552 GENE F. MAZENKO PRE 58

which is independent of position. Then the quan€y(12), O(s) in the ¢ expansion. By direct expansion db(k,h
which appears in the equation of motion f85(12), is given  =0,1) about®y(k,h=0,1) we obtain
in the form

4( ) Se(1)

* (_ ) Vs(l):d)s(l) ¢s+2( ) 61 ¢s+3(1)
Qa(12)= f(l)%E ————Gysp(11...12 '

0 (2s+1)! )

b o)) L S (101)

f dx sgr(x f dk —ikx; k23+lq)(k 1) e 2(4!)2 8!
= (L1 Then, since we will findS,(1)~0[(//2)—1], the terms in
- _ the expansion fols are of O(s), O(s+3), O(s+5), and

1 1)G 11...12, .S
=& )2 0 (2s+1)! Va(1)Gasia 2 O(s+6), respectively.

(100 Let us turn next taQ,(12) given by Eq(91). In the limit

of zero external fields we can set the term proportional to
where we have used the definition)@f(1) given by Eq(98) (M (1)) to zero, and then evaluate the second derivatives,
in the last step. 5%Pp(x,1)/6h(2)8H(1). After a significant amount of alge-
It should be clear that the verticeg(1) are of at least bra we obtair{36]

Gum(12)+ El( )G<S*2> oun(11...113

R dk
0:12)= | dx 261300 [ 5 e (kD)

fdng(l ) ihod( f—e—'kch(k 1)2 ( ) ——Gt2 . (11...113

o (-D°
=E)02 gV LGm mmnf11. - 113. (102
|
Before going on to discuss the structure of the perturba- 1o 0
tion theory at higher order, let us made sure the theory is R 2+ wo(ty) | Giim(atatr) = 8t — 1),
sensible at zeroth order where, from EGH0) and(102), (108
QY(12=£(1) hobo(1)G5(12), (103  This first-order differential equation has the solution
A (0) — t
Q>7(12)=&(1) o ho(1)Gum(12). (104 GO (q,tity)=—1i e(tz—tl)ex;{ ft ldq-[qz—wo(q-)]
2
VI. ZEROTH-ORDER THEORY i O(t—tR(t, e P (109

FOR TWO-POINT CORRELATION FUNCTIONS

The equations of motion at zeroth order for the two-pointand we have defined

correlation function is given by Eq$61) and(62), with Qz

— J'Ildf wq(7)
andQ, replaced by Eqs(104) and(103). Thus we have R(ty,tp) =, 77 “07, (110

Taking the inverse Fourier transform, using

CIA(L)+wp(1)GO (12 =5(12), (109
dig - e rAlat — )]
_ _ _ gre=a"ti—t)— — = (111
i[A(L)— wo(1)]GO (12 = — f d1TT(1DGEOL(12), f 2mi® & gy
(10 we obtain
where we have defined o T4 1y)]

(0) — i _ -

wo(1)=£(1) dodo(1). op  Cum(Nl)= 71T WRM W e
(112

The first step in the solution to these equations is to Fou-
rier transform over space. Taking the equation for the reit is straightforward to show explicitly the result we expect
sponse function first, we obtain from symmetry considerations:
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© o124t~ )] ), 9
GO (1 tqty)=—i60(t;—ty)R(ty,ty) ————————. GO(r t1t) =R(ty,to)R(t,,t0)
mmtltilz 1~ 2 102 [47T(t1_t2)]d/2 2 12 1,%o 2510 [2m(/ %+ 4T)]*2
(113 L
Xe—zrz/(/zum' (123
Let us turn our attention to the correlation function. It is
useful to introduce the inverse propagators In the long-time limit this reduces to
~ 2
Ghim (12=—i[A(1) + wg(1)]8(12), (114 e

G (r,t1t2) =R(ty,to)R(t,t0)go (124
(87

T)d/Z'
Guw (12=i[A(1) - wo(1)]5(12), (119
Let us turn now to the quantitiR(t,,t,) defined by Eq.
which allows one to write the equation for the correlation(110). We have assumed th&ft)~1/L(t) and we havep,

function in the form ~1/L(t), so for long times we can write
— — — — — — w
f d1 GRy'(11)GY"(12)=— f d1Mo(1) G (12). wo(t) = (1) hodo() = 7 (125
Cc
(116)

wherew is a constant we will determine, arnd is a short-
Multiplying from the left byGﬁ?,{,l and using the definition of time cutoff which depends on details of the earlier-time evo-
the inverse gives the symmetric form lution. Evaluating the integral

_ _ _ - t ty 0] ty+t
G<2°>(12)=—fd1f d2G!9(11)G9,(22)IT4(1 2). dr wo(7)= : dr = In( ! C), (126)
2

to tC+ T t2+tc
(117
we obtain

Taking the Fourier transform and inserting the results for the
propagators andll;, we obtain

w

ti+te
o+t

R(t1,t2)= (127

G(a,t3t5) = B(t;—to) B(t,— to) e~ (2t
2 Inserting this result back into Eq124) leads to the expres-

X R(t1,to)R(t2,t)0(q), (118  sion for the correlation function
~ ® ® _ 2
whereg(q) is the Fourier transform of the initial correlation GO(r tst,)=g(0) ty+te\ @ t+t @ e T
function. Henceforth we will suppress writing the step func- 2 (Nhil2)=9 totte) \totte) (87T)42"

tions in the correlation function. Inverting the Fourier trans- (128
form, we obtain
If we are to have a self-consistent scaling equation, then the

d%q .- - autocorrelation functionr(=0), at large equal timeg =t,
(0) a iq-r 72q2T .
Gy (r,t1ty) =R(t1,to)R(t2,to) 2 )de g(qe , =t, given by
T
(119 20
SHORE -
where it is convenient to introduce UNtotte) (8at)d2
ty+t 1
T2y (120 _(2o-di2 P 29
2 (to+te)%® (81)¥2

While we are primarily interested in the long-time scaling must have the forms{®)(t)=Aot. Comparing we see the
properties of our system, we can retain some control over thgynonentw must be given by

influence of initial conditions and still be able to carry out

the analysis analytically if we introduce the initial condition 1 d
w= 5 1+ 5/ (130
9(q)=goe™ M2(@)* (121
and the amplitude by
or
1
R e~ (12(11/)? Ag= - godlz_ (131
g(r)zgom. (122 (t0+tc) (8)

One question which arises is whether the time dependence
Inserting this form into Eq.119, and doing the wave- in wy(t) should be viewed as externally driven or self-
number integration, we obtain consistently developed. Rephrasing this question: Does the
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time evolution form(t) evolve out of the early-time instabil- . do 5 o
ity? It is instructive to see that this follows in a natural fash- ~ GX(r t,t,) = P e (HArTan
ion. Suppose instead of E¢L25 we assume [2m(/*+4T)]

— S (1) S(t2)

w X [1+ a(t;—ty)]¥?

=5 5 (132 {Séo)(to) 8 (to)
112
which is consistent with X[1+ a(t,—to) ]V
poity= 22 o [T (133 In the long-time limit this can be written, using definition
bo(t) 2S,(1) (139 for t., in the form

since ¢o(t) = \2/7S,(t). Inserting this result forg(t) into e 1T

Eq. (110 and Eq.(119 with r=0, one finds, at equal times G(zo)(f'tltz)=Ao[(t1+tc)(t2+tc)](l/2)(1+d/2)W'
t,=t,=t, a self-consistent equation for the zeroth-order

quantity S®(t): (140
with
[t dT Sgo)(to) _
S(zo)(t)=exp( 20 ) , 2w
0Sy(7) | [1+a(t—10)]*? A= (141
(134 1+d/2
Where Notice that this result foA, differs from the result given by
Eq. (131), and does not depend on the initial conditions. This
is evidence that the coefficiedty is nonuniversal. Note, if
SOty = Y (135 e choose to enforce the conditi()(Wer): 1 at late times
O (2mr2)an [see Eq(25)] we can fix the parametes at this order, with
the result
and
i 1+ d (142
a=4l/2. (136) d 2)

The general expression for the correlation function can be

This equation is solved in the Appendix, with the result . i .
rewritten in the convenient form

2w (0) _ 0) 0) —(UDr%(/2+4T)
0) 1y — | @t y_ =" _ty]-dr2 G (r,t1ty) = V'SP (1) SY (o) Po(tat,)e
(0 =| (o)~ S gz 11+ at=to)] (143
® where, using Eq(139 for 1/a,
+——=[1+a(t—ty)], (137
a(1+d/2) a2
V(ty+te)(ta+te)
L . . . Go(tyty)=| ——7 77— (144
and w is still undetermined. There are several interesting T+ttt
results which follow. If we look at the long-time limit of o ] ) ) )
wo(t), we obtain The nonequilibrium exponent is defined in the long-time
limit by
. S(t) 2 (0) T T ) A
VSP(t) S (1) otle
If we compare with Eq(125), we regain Eq(130), and find and we obtain the OJK result
1 d

Thus our procedure is consistent, and the system governatle put the subscripin on A to indicate the exponent asso-
by Egs.(118 and(132) is driven to grow as desired. Since ciated withG,(12). In generalG,(12) and the order param-

S(ZO)(t) is now a known function of time we can use Eq. eter correlation functiol©(12) need not share the same ex-
(134 to evaluateR(t,ty), and obtain the complete solution ponents.

to this zeroth-order problem over the entire time regime Looking at equal times, we have that
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GO(r tt) . mation for the four-point cumulants which enters into the
fo(x)= 2(0%=e*x 2, (147 O(2) correction for the two-point cumulant. In order to com-
S, () pute G4(1234) andGymmn(1234) toO(1) in perturbation

Lo theory, we see from Eq§61) and(62) that we must evaluate
where the scaled length is defined 3y r/4t . fo(x) is just

the well known OJK result for the scaled auxiliary correla- 53
tion function. =
Qu1234= 54y an(3)an(2) <M o
VIl. PERTURBATION THEORY
FOR FOUR-POINT CUMULANTS Xf dx sgn(x)Pp(x,1),

In order to see how things go at higher order in perturba-
tion theory, it is useful to look at the lowest nonzero approxi-and

. 52 .
Q4(1234= WQz(lz)

2
Dnh) T sh(2)eH(D)
52
3h(4)on(3)
52 5 5
sh(2)oh(a) D Cum(1) Sy PO Dt S Sh3) an(2) R (L) !

52
= —5h(4) 5h(3)f dx 2£(1)6(x)

= f dx 2£(1)8(x)

Gum(12+{(M(1

Ph(X,l)

Gummn{1234Pn(x, 1)+ Gum(12) Pr(x,1)

+Gym(13) (x,1)

(148

to O(1). Assuming, as we will show self-consistently, tl&t~O[(n/2)—1] andV,~0O(n), one easily finds that th&(1)
contributions toQ, andQ, are given by

Q5 (1234 = w(1)G4(1234 — w1(1) G,(14) G,(13)G,(12) (149

and

Q4(1234 = wo(1) Gummnl 1234 — 01(1)[ Gum( 12 G2(13)G(14) + Gm(13)G2(12) Go(14) + Gym(14) G5(12) G(13)

+G5(1)Gpymmn( 1123 +Go(13) Gymmn 1124 + Go(12) G ymmnd 1134 ], (150
T
where we have introduced the notation and
o)=L odp(L). B apazea-- Y 6,1140,m12

For future reference it is not difficult to work out tH@(2) +G4(1124Gym(13) + G4(1123Gyy(14)]

contributions toQ, andQ, given by — 01(1)[Gummmn 1134 G,(12)
+Gummmmnf 1124 G,(13)
Q1234 = — wlél) [G4(1134G,(12) + Gummmn 1123 Go(14)]. (153

+G4(1124G5(13)+ G4(1123Gy(14)] Using Eqs.(150 and(61), we easily find the determining
(1520  equation forG;mmmat lowest nontrivial order:
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J d1 Gyt 11)Gymmef 1234
+i01(1)[ Gum(12)G5(13)G,(14)
+Gum(13)G4(12)G,(14)

+Gym(14)G,(12)G5(13)]=0. (154

This equation is easily integrated to give

Gimmnf 1234 = f d1 Gitm(L D[ ~iwy(1)]
X[Gum(12)G2(13)G,(14)
+Gum(13)G,(12)G,(14)
+Gum(14)G,(12)G,(13)]. (155

Inserting Eq.(149 into Eq.(62), we have

Grid(11)G4(1234 +iw1(1)G5(12)G5(13)G(14)

—ITo(11)Gymmnl 1234), (156

where an integration over repeated barred indices here and

below is assumed. This can be integrated up to give

G4(1234 = —GY(1D)ITo(1 2) Guimmnf 2239
+Giu(11)(—i01(1))G2(12)G,(13)G(14).
(157)

Inserting the result fo6Gy;,,mmgiven by Eq.(155 and using
Eq. (117), gives the result

G4(1234 =GP (11)[ —iw,(1)]
X[Gum(12)G»(13)G,(14)
+Gum(13)G,(12)G,(14)
+Gum(14)G,(12)Gy(13)]
+G9 (11)(—iw1(1))G(12)G,(13)G,(14).

(158

If we evaluate all of the two-point correlations &, and
Gummmmat lowest order, we obtain our lowest-order approxi-
mation for the four-point quantities. Notice th@t, is prop-
erly symmetric under interchange of any two of its labels.

VIIl. STRUCTURE OF PERTURBATION THEORY
AT HIGHER ORDER

In order to understand the structure of the perturbation

GENE F. MAZENKO
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5n—1
Qn(12. ..M = S Sh(in=1)- - oh(2)

dk
deg(l)ol(x)JZe i (k,h,1)|.

(159

X

The first class corresponds to ath2 1 derivatives with re-
spect toh acting on®(k,h,1), to give, in the zero external
field limit, a product of two-point correlation functions of the
form

Q. (12,...,1)
=&(1) hoVn-1(1)G2(12)Gy(13), .. . Gy(1,2n).
There is another set of contributions where all of the deriva-

tives except the first acts on the factor multiplyibdgk,h,1),
and gives a contribution

Q2n(12, ..., ) =&(1) hoVo(1)G2y(123, . .. | 2).
Since each of these terms is of the same ordegjn we

easily find the proposed resul;,~ ¢, 1 . A very similar
analysis follows for the case @,,,.

IX. TWO-POINT CORRELATION FUNCTION
AT HIGHER ORDER

Following the same procedures, it is easy to find that the
next order contribution tQ,, andf)z is of O(2) and given
by

QP(12)= - %64(1113, (160
QP(12)=~ wlél) Gummnf 1112, (161)

Inserting Eqs(104) and(161) into Eq. (65) gives the equa-
tion for the response function to second order:

w1(1)

Gy (11)Gum(12)+1 —

Gummn( 1112 = 8(12).

Similarly, the equation determining the correlation function
to second order is given by

Vi w1(1)

G (11)G,(12) +i—;

G4(1112

= —TIo(11)Gym(12).

These equations can be integrated to give

— —iwy(1
Gun(12)= Giin(12) + Giop(1T) —

X Gummn 1112) (162

theory, one can rather easily see that we should consider two

classes of contributions to

and
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Il5(1 2)Gym(22)
—iw1(1)

G,y(12)=—-GQ,(11)

+G9(11) 3 Ca(1112). (163
Inserting Eq.(162) for Gy, into Eq. (163 gives
(0 (0) (T)
G,(12=G(12) + G (11)—GMmmm(1112
1( ) g—
+GOL(11) — " G,(1112). (164)

Using ourO(1) result forG,mmgives theO(2) result for
the response function

GMm<12>=G&ﬁ’)m<12>+G&ﬁ’a1(1T>zﬁa1(T?>Gm(?z(>, .
16

where the lowest-order self-energy contribution is given by

Sin(12) =3[ —i01(1)1Gn(12GP (127 —iwy(2)].
(166)

Using the results folGymmm and G, at O(1) leads to the
O(2) result for the correlation function

G,(12 =G (12) + G (12) + G (21) + G2 (12),

where

GEY(12 =GP (1D)3{{(12)G\n(22)  (167)

and

G22(12)= - GQ,(1DTI?(12)G (22). (168
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di2—1, ,di2—1
Ry(Y1.y,) = Y1~ Y2
1(Y1,Y2)= ,
[(y1+Y2)(3y1—Yo—(Y1—Y2)H) ]2
d-1

2
GF?(12)=So(1)Sh(2) —

0?®(tyt),da(X, g ,ty),

ty /T to /T
‘]Z(X-tlth):f d)&f dy,R5(Y1,Y2)
to/T /

to/T

% @~ (11202(y1.y2)x?

di2—1, ,di2—1
Y1~ Y2

[(y1+Y2)?(3—y1—Y2)

Ra(y1,Y2)= e’

where we have chosetf=r2/4T and

Gu(yrya)= — Y2
\Yi1.¥y2)—
3y1— Y2~ (Y1—Y2)?
and
gz(Y1,y2)=m-

The first thing we should do with this result is look at the
contribution at this order to the onsite equal-time=t,=t
correlation function given by

S:(1)=8"(1) +2G5 (11 +G5?(11)
d

2
= S0(t)| 1+ 2%23,(0,11) + szJz(O,t,t)

where we have the integrals

The self-energy is the same as for the response function and

—iwy(1)]1GY(12)[ —iwy(2)].
(169

n?(12)= - 3

We need to evaluate(®Y andG{>?. The integrations over
space, ind dimensions, are straightforward since they in-

1 Y1
31(0.1I):f d)ﬁf dy,R1(y1,Y2),
to/t to/t

1 1
JZ(O,t,t)=f dylf dyzRa(y1,Y2).
to/t to/t

volve products of displaced Gaussians. After rescaling th&@he key point here is that;(0,1f) andJ,(0t,t) are loga-

internal time |ntegrat|0n$1—Ty1, tz—Tyz, T=2%(t;+t,),
we obtain

GRY(12)=Sy(1)Sp(2)2¢ 1

X wzq)o(tltZ)Jl(thl/T!T)a

ty /T Y1
Jl(X,tl/T,T):f d)ﬁf dy,R1(y1,Y2)
to/T to/T

X e~ (1201(y1.y2)x°

rithmically divergent at— . One can show to logarithmic
order that

J1(0,11)=Kqln(t/ty) +

where

1 Sd2-1
Ky= | d ,
d fo Z[(1+z)(3—z)]d’2

and
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2
Jo(0t,t)= 3T/2Mdln(t/to)+ o

where

" fld 29271 1 T2%(d/2)
= Z f—
" Jo [1+2]9 2 I'(d)

We have then that

My
K+ g | Inittg) -+

20d
1+ %2 i1

Sy(1)=S)(t)

and a simple exponentiation of this result gives

w229 Kg+ (Mg /3927 1))
| e

52(1)23(20)('[)(%

For self-consistency we must determineat this order. Re-
membering that at lowest order

S(ZO)(t) :AOtZw—d/Z'

we require that

20— di2+ 0229[K 4+ (My/332+ 1]
Sz(l):Ao(t—) (1+---)=At
0
which determineso at this order:
2t 0228 Kt Ma | g, 9 170
wTw a7 Qa1 T 2 (179
Then, for example, fod=2
K2= %In 3, M 2= %
and
V1+2In3+4/9—-1
w= =0.68768730. ...

In 3+2/9

For larged analytical progress leads to the results

27 1
Md% F;-}—’

and

d
wzz(ﬁ—l).

A numerical determination ofv shows that it is approxi-
mately linear withd over the whole range af.
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Thet/ty—o0 singularity inG,(12) atO(2) can be regu-
lated by turning our attention fror®,(12) to the quantities
d(tqt,) andf(x,t1/t,) defined by

and the constraint(x=0;, /t,) =1. If we write

G,(12=GY(12)+ AG,(12)

and

Sy(1)=SP(1)+AS,(1),

then

G,(12
VS,(1)S,(2)
=00 (ty,t,)fo(x)
1| AS,(1)
X(1_5 o)
AG,(12)

' VSP(1)sP(2)

D(tyty) f(x,t;/ty)=

AS,(2)
s (2)

|

(172

We can then separate the contribution to the on-site correla-

tion function ®(t,,t,) from the generak dependence and
write

D(tg,t))=Do(ty,t)[ 1+ 0?29AD(ty,15)], (173
f(X,t1 /1)) =fo(XN)[1+ w?20W(x,t,/t,)], (174
where
ADP= 1D+ i D,
N t /T Y1
(I)1:EJ dY1J dy,Ri(Y1,Y2)
to/T to/T
1 /T Y1
+ EJ d)ﬁf dy,R1(Y1,Y2)
to/T to/T
1 1 Y1
- Ef dylf dy,Ri(y1,Y2)
to/t to/ty
1 1 Y1
- Ef d)ﬁj dy,Ri(Y1,Y2), (179
to/ty to/ty
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L [T to /T e 1 Lt 1
<1>z=gJ dylf dyzRa(y1.Y2) — ﬁf dylf dy2Ra(y1.Y2) — Tzf dy1J dy2Ra(y1.Y2)
to/T to/T to/tq to/ty to/ty to/ty
and
e 1 — (1/2)Agyx2 L[ 1 — (1/2) Agyx?
W(X,t1/t2) =2 o dy; o dy2Ri(y1,y2)[e =11+ 3 o dy; o dyzRi(y1,y2)[e 7 —1]
ty /T ty /T 5
+ %J dylf dy,Ro(y1,y,) [ (2802 —1],
0 0
|
where - ty /T V1
Iy (tl/T):f dylf dy2R1(Y1,Y2)A01(Y1,Y2),
(Y1—Y2)? ° °
Ag;=01(y1.¥2)—1= 31— Yo (Y1-Ya)? T T
1= Y2— W17 Y2 1 2
2ttt = [y, [ vty v A,
and
Yoty where sincel >t,, the lower limits can be set to zero. After
AGr=0o(Yq,Ys)— 1= % making the change of variablgs=y,z one finds that one
3=y1—Y» can perform the integral ovef; to obtain
Let us first look first atAd(t,,t,) and the integralsh @ 2
and ®,. An investigation of®, shows that it is a regular 117t /)= 5 [3a(t /T) = Ky(ta /T)], (178
quantity fort,>t, or t,>t;. Turning to®,, however, one
finds that it is logarithmically divergent in these limits: where
® 2MdIn \/tltz) N ty 1T 2021
2= a2 Jy(t /T =f dz , 179
302 T a(ty /) . (1t 222—2)]" 179
This means that to second order we have 1T S0/2-1
Kd(tllT)zf dz , (180
Vi, 2 , 2My [Vt o [(1+2)(3-2)]%"
q)(tl,tz): T 1+w 3d/2+1| T y , X
12 (t/T)= =| Ly(ty/ty) +Lg(ty /1) — —=My|,
which can be exponentiated to give 2 d| @R TRl ga
(181
Vgtp\ e
D(ty,t,)= T”) (1+--0), (176  and
it zdi2-1
where Lttt = [ a2 t -
2[g_2
a2, (1+2) (3 T(1+2)
)\m:§+w W (177) (182)

Notice that at equal time¥ 4(1)=Ky, L4(1)=J4(1), and
It is just this expression fox discussed in Sec. Il. all of these integrals are well behaved.

Turning next tof (x,t,/t,), one of the first things to note  There is one last regularization that must be carried out
is that it is for smallx. Looking at the first term in the power before the perturbation theory expression for the correlation
series expansion ik?, we obtain function can be used for all values of the parameters. Con-

sider thatW can be written as the sum of three terms:
WXty /tp)=— 3 x2[1312(t 1T+ 312(t,/7) -
1

y1
(1) -1
+ 11Dty /)], W (Xt /1) Zfo dle’o dy;R1(Y1,Y2)

2
where x[e~ (2891 _ 17,
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1) 1 to /T Y1
W( (X7t2/t1):EJO dﬁfo dy,R1(Y1,Y2)
X[e~ (1/2) Agyx® _ 1],

tp /T

, (T
wt )(X:tlltz)zéfo d)ﬁf dy;R(Y1,Y2)

0
X[e~ (1/2) Agpx? _ 1].

In W(x,t,/t,) let y,=y;z, which leads to the result

t,17d
\N“kxmlnzr:%fl E
o Y1

1 20/2-1
XJ;dzﬂ1+zn3—z—yﬂ1—zFHW2

1, Ni1-2?

MAZENKO
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1+x2d5 1 Zd/2—1

“l(112)(3-2)1%

X2 t; s(1—2)2
PRI eT 3o |

4+

1
WO (x,t;/t,)= Ef <
1 0

X

NI

The singular part is now isolated in the second piece that
does not have exponential convergence for la&agé/e have
then

W(l)(X,t]_/tz): -

TKgIN(1+x%)+---. (185

Clearly,
W(l)(x,tz/tl): -

FKIN(L+x3)+- - -. (186

Turning to the third contribution, we again isolate the small
y; andy, behaviors, and expanding k% in places which do

Ll T
x[exp 2" azya29 -1 (183 o contribute to the singularity gives
Notice in this integral that there is an apparent log diver- , 1 /T T yderlydizl g
gence for smally; which is canceled between the exponen- W (x,ty /ty) = gf 1f dy,—————
0 0 (y1ty2)" 3

tial term and the subtraction term. Note that the log terms
survives ifx is large enough. To pick out the log term we can

expand about smail; except for the contribution®y, and
write

t,/7d 1 zd/2-1
W(l)(x,t1/t2)= %j ! ﬂJ' dz

o YiJo [(1+2)(3-2)]9?

2Y1(1_Z)2)_

“4_%X (3-2)
+AWD(x,t4/t,),

X

where AW®)(x,t, /t,) has no singularity for large. If we
now make the change of variables

t;s

ST (184

Y1

in the leading integral we obtain

1+x2ds (1 zd/2-1

WOt it = 2 [ 79 [
2 Y e r sy

1%...,

1 x* t;s(1-2)?

P2 T 3o

where the---

refer to contributions which are regular. The

X[exp VOV 1]+ ...

Next make the coordinate transformations

y =Sl—t1 (187
Y T14x?)’

-2 189
YT 1) (188

which results in the leading contribution to the integral

1 J“de f“xzd S
S — S —_—
2(3)92+1Jo oo T (st syt

x2 [sit1  sotp
X[exp{’ 1+x2(T+T”—1}+~--

Again, the leading behavior for large comes from terms
which do not have exponential convergence for lasgand
Sy:

d/2—1.d/2—-1
1 2

S
W@(x,t,/ty)=

ol

1 1+x2
2) -
W@(x,t,/ty)= 23d/2+1j0 ds;

di2—1.d/2—1
1 S

xJ“XZd > +
0 > (s1+52)¢

integral overs can be divided into a regular part from 0 to 1 If we let s;—1/s; ands,—1/s, then this integral takes the

and the singular part for largegiven by

form
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Ph(X1%5,1,2) =(8(x;—m(1))(x,—m(2)) (193
\N(Z)(x,tlltz):— 1 J’l h{X1X2 (8(xq 2 oh

2+1 2 . . .
23 U1+x9) and the correlation functions are obtained at zero external

1 Sg/zf 152/271 field via
Xf 4% — 5+
1(1+x3) (51+5S2) C(12)=f dxlf dx,0(X1) 0 (Xp) Po(X1X2,12). (194)

This integral was evaluated in our treatmentdofwith the
result More generally, we can treat the set of correlation functions

1+x? Cn (12)=(an(1)o(2))

> +on

W (x,t,/ty)=—

2Myln

1
23d/2+l

:f dxlf dX,04(X1) 0 /(X2) Po(X1X2,12).
Then to leading order for largewe have

Since we have computed the auxiliary-field correlation func-

1 1+x2 tions toO(2), wealso need to determir@,,(12) to second
- 2y _ ' n/
WXty /tp) = = Kqln(1+x7) gdi2+1 Mgln 2 e order. This expansion can be developed as follows. As in the
case of the one-point quantify,(x;,1), we again use the
The scaled correlation function then has the form integral representation for th&function to obtain
dk; [ dk, . )
Md — _1 _2 —ik1X1a—ikoX H(12)
f(X,ty /1) =fo(X)| 1— 0229 Ky+ W) In(1+x?) Ph(x1,X2,12) J 27rf 5 € e (e ),
X[1+---]. (189 where H(12)=ik;m(1)+ik,m(2). The average of the ex-
ponential is precisely of the form which can be rewritten in
This can be exponentiated to obtain terms of cumulants:
f(x,t, /t )=&[1+-.-] (190 (e"12) =exg >, iG(">(12) (195
L1/t (1+X2)Vm/2 ! n=1 nl H '

where the exponent governing the langbehavior is given Where G{(12) is the nth-order cumulant for the field

by H(12). These cumulants can all be expressed in terms of the
mfield cumulants. In this section we can work directly in
terms of zero external fields, where all odefield cumulants

2pd+1 . (19)  vanish. Here we will need

Kg+

Pm— @ 30/2+1

GY?'(12)=(ik1)?G(11) + (ik2)*G2(22)

X. ORDER PARAMETER CORRELATION FUNCTION . .
+2(ik1)(ik2)G,(12),

A. Perturbation expansion
. . (4) — (i 4 ; 3
We turn next to the connection between the correlation G (12)=(ik1)"G4(1111)+4(ik1)"(1k1)G,4(1112

function for the auxiliary fieldm and the order parameter 1 6(ik)2(iks)2
correlation function. If we look at the problem using the B(ik)™(1k;)"G4(1122
transformation given by Eq28), we have +4(ik ) (ik,)3G4(1222 + (ik,)*G4(2222),
C(12=(y(1)(2)) and
=(a(1)o(2)) +(a(u(2)) Gg)(12)=(ik1)6G6(lllllj)
(1) (2))+{u()u(2)). +6(iky)(iky) Gg(111112

The key point is that sinca(1) vanishe; exponentially for +15(ik;)*(ik)2Gg(111122
large |[m(1)|, the averages over these fields are down by a _ _
factor of L2 relative to the averages over the fiald1). +20(ikq)%(ik2)%Gg(111222

Thus (a(1)o(2))~0O(1) asL(t)—c, while {(o(1)u(2)) . .
and(u(1)o(2)) are ofO(L~2) and(u(1)u(2)) of O(L 4. + 18(iky)*(ik,) *Go( 112223
In the scaling regime we have +6(ik,)(ik,)°Gg(122222

C(12)=(a(1)0(2)). (192 +(ik)®Gg(222223.

This quantity can be evaluated using the two-point probabil\Working to second order in thé expansion requires keeping
ity distribution terms
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(1) =d(ky ,kp,12)
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Ci(12)= G“><1111>cn+4/<12>
X 1G(4)+1 G(4) +iG§$)...}
6! 1
(196) 3764 (1112C5,14(12)

where in zero external fieldq(k,,k,,12) is given by

1
+764"(1122C, . (12)

Do (k1kp,12)=exp—3[kiG,(11) +k5G,(22) L
) (0)
+2kk,Go(12)]. (197) 371G (1222Ch1115(12)
1 (1>
B. Terms of O(1) + m (2223Cn /+4(12),

Let us look first at the theory keeping terms upQ¢1).

Itis then straightforward to show that the two-point probabil-yhere we remember tha@(?(12) is a known functional of

ity distribution is given by

the exactG,(12), and that th&,’s are also the exact quan-
tities. ThusC(%(12) andC{}(12) both contain contributions

d4
Po(X1,%;12)=| 1+ — (1111) ;+4G,(1112 of O(2). . _ o
4! 1 Thus determining th€,,, to first order requires first de-
termining G, to first order, then evaluating th@{®(12) as
3 42 o2 X X . nZ i
X — +6G4(1129 — — functions of G,, and finally the evaluation of the various
dxf dx, 4 dxi dxg two-point contractions 06,(1234) evaluated at first order.
We have already evaluaté$”’ and we have the appropriate
d? d* first-order expression fo5,(1234). Notice that it is the
+4G,(1222 dx; gy +G4(2222 dxé same set of contracted four-point quantities which enter into
2 2 the determination of any set,/. Let us restrict our subse-
X P(xq,%7;12), (1989  quent analysis to the correlation functioBg,(12). The first-
order correction to the leading Gaussian result
whereP{"(x,,x,;12) is given by
2
(0) -1
PO (x,%,,12 9(12)= lposm f(12) (203
= i ﬂ is given by
2T \S5(1)S,(2)
p[ y2(12) 2 b CH(12)= (1111)c<°>(12)+ G<1>(1113c<°>(12)
Xexp — se—ee X2 +x3
+—G£11)(1122)C(0)(12)+ G<1>(1223
—2G2(12)x1%,] |, (199 4
1
L <°>(12)+ <1>(2222>c§,?3(12). (204
Y(19)= ——, (200
1-15(12) The zeroth-order correlation function§{®)(12) can be
and evaluated using the identities
Ga(12) Cl%. 1(12)= ————=C(12) (205
f(12)=—. (201) n+1/+1 39G,(12) n/
VS:(1)S:(2) ?
Notice that we already have one resummation here since it %nd
the full G, which appears iP{®)(x;x,,12). The general set
of two-point order parameter correlation functions are given, C 12)=2 c@ 12 206
up too(]_), by n+2/( ) (982(1) n,/( ) ( )

Cn (12=CP(12+CM(12)- - -, (202)

derived in the TUG. Starting with the expression for
C{%(12) given by Eq.(203), all of the other quantities can

where the first-order correction to the leading Gaussian bebde calculated by taking derivatives. A summary of the results

havior is given explicitly by

we need forC{J(12) is given by
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o 2 % , , where
C40(12)=;S%(1)7’ f(3—2f?), (207)
1 dr>—1
Lg=| d (219
C(O) 12 :_E wé 3 208 ‘ 'fo y[(Z_Y)(1+Y)2]d/2
31(12) 77'@/2(1)8%/2(2)?’ (208

is the equal-time limit ofL4(t,/t;) defined by Eq.(182.
Next we have

c¥(12)= 2 Lﬁ 3¢ (209
2 TS(1S2) 7 o d
G, (1122 =—-2w2 1 2
Next we need the various contracted four-point cumulants 4 (1122 02 5(1)%(2)
appearing in Eq(204). These can all be evaluated using Eq. X[ EY2W5(x1,&)+ & Y2W5(x0,671)],
(158. First we have the fully contracted four-point cumulant (212
G{)(111)=—4w2'Sj(1)Ly, (210 where
|
1 yd2-1 ”
Wa(x ,§)=f dy e (M2 xag0e),
P o (g1t £+ y(1-y) 112
L 2_ .2
§=—, X{=rel(4ty),
t
and
go(&y)= TrEry(i=y)’
Finally we need
GyY(1112 = — w2"S,(1) Sy(2) £ M2[BW, (%1, &) + Wy(Xy,£)], (213
d/2
Wl(xl g): Jldy yjlz*l 2 e (172) Xﬁz(éy) (214)
o (L+y)[L1+3é+y(3—§—2y’] ’
¢ 2 d/2
Wa (X | :f dy \A2-1 e (112 xféz(g,y)’
2(X1,€) . y Y (1+y)(113¢-2y)
~ _ 6
g1(&y)= T13e-2y’
|
and 2d,3
CY(12)= “o -~ 2L4f(3-21)
GalEy)— /R + EBW (%1, 6) + WXy, £)]
1+3&6+y(3—§)—-2 _ _ _
Hr3erys=o-2y] EIBW, 00,6 D)+ Wz, ¢ 1]
Note the check on Eq$212) and (213 that they reduce to —3£2fWy(xy,€) —3& V2 W5(x,, 671}
Eqg. (210 as 2-1. Pulling all of these results together, we (215

have theO(1) corrections to the order-parameter correlation
function There are several limits of interest. First consider the on-site
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unequal-timet,;>t, limit, which gives the nonequilibrium
exponeni. In this limit f is small, and has the form for large
¢ given by Eq.(145 which, in our notation here, reads

f=A¢ 94 (216

whereA{® =292 at lowest order. Similarly the zeroth-order
order parameter correlation function has the form

2
ClO0y 1) = —YgAlE " (217

Second-order contributions fochange the exponeitfrom

d/2 to the expression given by E@L3). Do the new first-
order terms give contributions which changat first order?
To answer this question we need to set0 and taket large
in C{{(12). The main results we need for largare

Wy (0,&) = ¢ %q,(d),
W,(0,&) =& ¥2q,(d),

W;(0.£~H=qy(d),

4
Wo(0¢ 1= G292,

2 4
W;3(0,6)= a§ ,

W;3(0,6~ 1) =[Iné+qs(d)],
with the dimensionality dependent quantities defined by

2

d/21'*2(d/2)
do(d) = (5)

ra) -’

d/2
:Zd/ZK ,
<1+y)<3—y>} d

1
ql(d)=JOdy y2t

di2
2

(1+y)(1+3y—2y?)

_ ! 12— 1
qz(d>—fody e
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di2-1
y

y)(1+y)?]%2

X[—2e~ (1/2) x2(3_ 22)+ 2~ (112 x2g1(1y)

w2d73 1
cH12)= f d
0,0( ) 37 0 y[(z_

+6(1—f)e” W2 XGo(ly)]. (218
For largex one has, sincgo(1y)>1, g;(1y)>1, that only
the fully contracted four-point cumulant contributes and

w2

Ci(12)= 3 (—6Lyf(12), (219

which does not give a first-order contribution to the exponent
V.

The last point to be discussed in tE1) evaluation of
the order parameter correlation function is that one must be
careful about the behavior at short-scaled distances at equal
times. Let us write

CHa(12=7°A(x), (220

whereA(x) can be read off from Eq218). Then for smalk
we see that\(x) goes to zero as?,, while y° blows up as
1/x3. Such singularities are unphysical, and indicate that we
are expanding about a singular order parameter interfacial
profile in this regime. It is just these singularities which give
rise to Porod’'s law. One possible resummation is

2 A
F(x)= ;sinf1 f(x)— g (;—OX)
— T AKX (221
200 V1—f(x)%+4qo/m

and a reasonable choice fog is q§= A(X), wherex is some
renormalization point chosen such that the scaling function is
smooth.

We can then conclude that the first-order correction to the
order parameter correlation function do not lead to correc-
tions to the exponents and v. Thus, toO(1), G,(12) and
C(12) share the same OJK exponents.

C. Terms of O(2)
Turning to the more involved case of the terms@(f2)

We see then that these contributions do not contribute termsontributions toC(12), we find four types of terms. There
to the exponenk at first order. One has only a contribution are the terms irG,(12) which are ofO(2) which must be

to the amplitude

2d
C(l)(oatl !t2) = a?)),n_ gid/“
X[—6foLg+30;1(d) +0o(d) +30z(d)].

For equal timeg,=t,=t and £=1, the expression for
Ci(12) simplifies significantly. All of theW's share the

same integrand except for tiggs multiplying x? in the ar-

included in the contribution given by E¢203 and which
have already been evaluated. Inserting these resulfdrito
Eqg. (203 we find, since is small in the regime controlled by
v and\, that the order parameter correlation function picks
up the same corrections leading xg, and v,,,. Let us turn
now to the other three contributions.

(i) One has terms dD(2) from Eq.(204) where the lead-
ing orderGEll) contributions are replaced by their next-order
correctionsG{?.

(ii) The leadingGg contribution in Eq.(196) is of O(2),

gument of the exponential. After considerable manipulatiorand contributes t€)(12).

we have

(i) The term G$)2 in Eq. (196) is also ofO(2).
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Just as in Eq(1998), the factors ok; in Eq.(196) justlead tion. It is also instructive to consider using equation of mo-
to higher-order subscripts in the multiplicative factors oftion methods for determining the order parameter scaling
Cff}(lZ). Thus inC()(12) there are contributions of the function as in Ref[3]. Let us return to the equation of mo-

form tion for the order parameter given by E§9). We will limit
the discussion for simplicity to the case of equal times where
dky dko the equation of motion for the order-parameter correlation
f dxl‘f(xl)f de‘T(XZ)f 27 om C et function can be written
22 ik )(iky)3Gg(11122 J 2|~
o1 (K1) (1ka)"Go(111222 21~ 2V3| C(RD = ~2aa(1)(VM(1)0(2))
)12 22 =—2K(12) (222
= C§3(12) 57G(111222 :
and Assuming we have a scaling solutidh(ﬁ,t):F(x), we
easily find that the equation of motion takes the form
f dx;o(X )j dx,0(X )j%%eiklxleikzxz R
19171 202 | o0 24 X- VF(X)+ V2F(x) = L2K(12). (223
H 20 2\ 2
XE(M) G2(1122 We can then focus oK(12). At leading order, it is easy to
2 4! show thatK(12) can be written in terms of the two-point
36 probability distribution as
=Cc(12) 5G5(1122. N
2(4 K(12)=((Vm(1))))Cof(12)+KV(12), (224

While there are a great many terms to be analyzed from all . )
three sets of contributions, none appear to give corrections t§Nere Co(12) can be evaluated using E@O3 in Eq.
the exponentd. andv. Thus it appears t®(2) thatA =\, '

andv=v,.

CR(129 =~ f(X) (). (225

2
Xl. EQUATION OF MOTION CONSIDERATIONS 77(5(20)(1))2

In Sec. X we determined the order parameter correlation
function by relating it to the auxiliary-field correlation func- At lowest order we can also evaluate

— 52
(0) —yvB®y® I
K (12) |:VI V| f dxlf dXZO'Z(Xl)O'(Xz) 5h(3)5h(4) Ph(X1X2!12):| 410

= (VEVIGR(13) P (14)Cy( 12) + G (23 G (24) C i 12)
+[GY(13G5”(24) + G5 (23GY (14)1Cao 12})]5-4-1.

Since 2
ViF(0= — 0V (), (228
(VPG (13)]5-1=(V{VGL(14)]4-1=0,
i we obtain the scaling equation
we find
K 1) (0 - 2 T 1 = 5
K©(12)=(V{YGY(12))2Cyy(12). (226) x- VE(X) + V7F(x) +tan - F(x) n 5 (VF (X)) =0,
) . (229
Putting these results together, using E209),
where
f(x)y(x)ztar{gF(x) (227
7 LA(Vm)?),
— (230

and 2p sy
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Analyzing Eq.(229), however, one finds the remarkable re- seems reasonable that the uniqueness of the particular real-

sult that there is an analytical solution given by ization of the theory presented here can be investigated
within its own structure.

> It is clear that one can introduce more sophisticated re-

F=—sin"![e” X2/2] (231)  summation methods than the direct method used here. These
™ methods could be useful, for example, in establishing the

) . ) connection between the exponents governing the statistics of
with u given by the OJK resul = 7/2d. Thus the equation e yxiliary field and those governing the statistics of the

of motlgn method gives the same result as the method of yer parameter field. While these are equad@2), it is not
evaluatingC,(12) directly. This lends strong support to the 4 4| obvious that this holds at higher order. It will be inter-
structure of the approach. esting to see if one can formulate alternatives to and resum-
One interesting question concerns the work here coMpiions of theg,, expansion developed here. For example it
pared to that in the TUG. If one makes the replacement  ¢oams to desirable to find an expansion, as in the TUG,
which matches the exact solution fde= 1.
T 1 In the second paper in this series the theory is extended to
o E(VF)2—> " (232 then-vector model. It will turn out, at least &(2), that the
¢ expansion is related to a large expansion. The main
Gfocus of this second paper will be to look at the determina-

in Eq. (229, one obtains the basic equation in the TUG . . "
tion of defect spatial and velocity correlations.

approach wherg must then be determined as the solution to
a nonlinear eigenvalue problem. Given the selegté&d one
then has the analytic results=d— (7/4u*) and v=d
— (@/2u*). In the TUG approach and v are not indepen- ACKNOWLEDGMENTS
dent (#=2\—d). The TUG results foh andv as functions

! | thank Dr. R. Wickham for useful comments. This work
of d are shown in Tables | and !I. It seems clear that the TUGWas supported in part by the MRSEC Program of the Na-
values for A and v are superior to those of the present

second-order theory. In particular, the TUG approach givegzggl?ﬂgmence Foundation under Contract No. DMR-

the known exact results in one dimension. Clearly the behav-
ior of v with dis different in the two approximations with the
TUG giving v— 0 and the current theory giving—« asd

increases. Thus the TUG results are in agreement with the APPENDIX: SOLUTION FOR S{(T)
fﬁ:gjﬁt'ﬁ;gf Bray and Humayun that laxgjeorresponds to In this appendix we present the solution to the equation

It should be kept in mind that while the TUG approach
does well in giving these exponents, it is deficient in treating _rtodr | SPto)
the smoothness of the auxiliary-field correlation function S(zo)(t)=ex;< 2wf 0—)—,
which enters into the determination of defect dynamics. The Sy (1) QU1
present theory gives good results for the exponents-the cor-
rections to OJK all appear to be in the right direction, andwhere
give the auxiliary-field correlation functions which are

smooth.
Q) =1+ a(t—tg).

Xll. CONCLUSIONS Cross multiply byQ¥%(t), and take the time derivative, to

The key accomplishment in this paper is to show how onepbtain the rather simple equation
can set up a systematic calculation which allows for both
nontrivial nonequilibrium exponents and v, and results for 0
the auxiliary-field correlation function which are smooth ~(0) da S(1) 9y
enough to offer physical results for defect structures. The S (O 2 oun ““
structure of the theory presented here is appealing since the
deviation from the OJK results can be handled perturba- ) ) )
tively, and one can see and control the post-Gaussian correfiroducing the integrating factor

tions.
The key question remaining is the uniqueness of the SO (t) =ex _gftdr a X(1)
theory developed here. While it seems that there is a degree 2y, Q(7) '

of universality in this problem, the answer to the question

posed involves the robust nature of this universality. This

can be investigated by looking at those changes in the equghere

tion of motion for the auxiliary field which may change scal-

ing results. Thus one can try to find marginal variables which _ drt a

could lead to exponents which depend on a parameter. It X(t)=exp(§Jt dTQ(T))
0

2w.
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This is easily integrated to obtain
[t — d(t @
X(t)=SX(ty)+2 fdtex —fd —.
H=5P(t) “) D(Z 97a0

We can then do the integral

PERTURBATION EXPANSION IN PHASE-ORDERIS . . .
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t o% t
TR
=In[1+a(t—ty)].

d
dTa_ln[l—l- a(t—1g)]

This result is then inserted in the integrating factor and the

remaining integral ovet can easily be carried out to obtain
the result given by Eq(134).
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