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Perturbation expansion in phase-ordering kinetics: I. Scalar order parameter

Gene F. Mazenko
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 3 March 1998!

A consistent perturbation theory expansion is presented for phase-ordering kinetics in the case of a noncon-
served scalar order parameter. At zeroth order in this expansion, one obtains the theory due to Ohta, Jasnow,
and Kawasaki~OJK!. At the next nontrivial order in the expansion, worked out ind dimensions, one has small
corrections to the OJK result for the nonequilibrium exponentl and the introduction of a new exponentn
governing the algebraic component of the decay of the order parameter scaling function at large scaled
distances.@S1063-651X~98!10108-3#

PACS number~s!: 05.70.Ln, 64.60.Cn, 64.60.My, 64.75.1g
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I. INTRODUCTION

Significant progress has been made in the theory of ph
ordering kinetics@1# using methods that introduce auxiliar
fields that are taken to have Gaussian statistics. These t
ries well describe the qualitative scaling features of order
in unstable systems. The methods developed by Ohta,
now, and Kawasaki~OJK! @2# and the theory of unstabl
growth ~TUG! @3# each have appealing aspects and se
rately give good descriptions of different aspects of the
dering problem. A major lingering question is why the
methods work as well as they do, and how they can be
onciled and improved. Thus there has been a search@4–6#
for a field theory description where to OJK or TUG is th
zeroth-order approximation in some systematic expans
Such an expansion is presented in this paper@7#. It has the
OJK result as its zeroth-order approximation. More imp
tantly it indicates how one goes forward to improve on the
theories. The case of a scalar order parameter is treate
this paper. These ideas are generalized in a companion p
to the case of then-vector model, and systems with contin
ous symmetry in the disordered state.

The problem of interest is the restoration of equilibrium
a system rendered unstable by a rapid temperature quen
a regime where the final state corresponds to a broken
crete symmetry. The ordering is controlled in this case by
decreasing area of domain walls separating the compe
final degenerate states. The two coexisting theories, the
theory and TUG, have been useful in understanding cer
aspects of this problem. TUG has led to nontrivial expr
sions for the nonequilibrium exponentl, defined in detail
below, which are in good agreement with values known
actly or from simulation data. However, as discussed by M
zenko and Wickham@8#, in the TUG approach the auxiliary
field correlation function exhibits a nonanalytic structure
short-scaled distance which leads to unphysical results w
used in calculations of defect densitites@9,10# and defect
velocity distributions@11,12# for systems with continuous
symmetry in the disordered states. More recently, it w
shown @13# that the OJK theory can be derived from th
exact continuity equation for the defect densities for po
and line defects, and that it leads to smooth physical res
for defect properties. On the other hand, the OJK resu
only compatible with rather trivial results for the exponentl.
PRE 581063-651X/98/58~2!/1543~25!/$15.00
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Thus, at this point, one does not have a theory which is b
smooth enough for treating defect dynamics and yet rob
enough to give nontrivial results for the nonequilibrium e
ponentl.

In principle, the task for the theorist in this problem ma
seem obvious: Linearize the order parameter equation of
tion, and formally arrive at a Gaussian field theory. Then
perturbation theory in the remaining nonlinearity. This is t
well known path in conventional field theory. The problem
however, becomes clear when one looks at the simplest f
for the equation of motion satisfied by the order parametec
in dimensionless units:

]c

]t
5c2c31¹2c. ~1!

It is clear from this form that there is no dimensionless no
linear coupling in which to expand. If one expands in t
nonlinear termc3, one obtains exponential growth in tim
~the Cahn-Hilliard theory@14# in the case where one has
conserved order parameter! which, as a zeroth-order approx
mation, does not include any of the basic qualitative featu
of the long-time ordering. The reason is that the nonlinea
is essential in stabilizing the growth in the long-time lim
Indeed the combinationc2c3 must become small as th
system orders. A mean field theory by Langer, Bar-on, a
Miller @15# is an improvement, but is ultimately flawed b
the inability to treat the separation of the two characteris
lengths in the problem. The dominant scaling lengthL(t)
grows algebraically with time, and characterizes the aver
separation between defects in the system. The other leng
the equilibrium correlation lengthjE . Clearly, at sufficiently
long times, L(t)@jE . This two-length problem was ad
dressed by Mazenko, Valls, and Zannetti@16# ~MVZ !, who
argued that the solution to this problem is to separate
order parameter fieldc into a peak contributions and a
fluctuating contribution (t)u, c5s1u. Thens is associated
with ordering on the length scaleL(t), andu with equilibra-
tion on the length scalejE . In the structure factor thes
variable is identified with the growth of a Bragg peak wi
width L21(t), andu is identified with the Ornstein-Zernike
contribution with width governed byjE

21 . One reason for
going over to the auxiliary-field method is to insure that t
1543 © 1998 The American Physical Society
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1544 PRE 58GENE F. MAZENKO
Bragg peak grows with the proper weight which correspo
to the equilibrium average of the order parameter square

The work of OJK predated that of MVZ, but fits into th
picture developed there. OJK ignored the fluctuationsu
50), and assumeds is a function of a Gaussian auxiliar
field which is diffusive in nature. There have been a num
of subsequent papers@17–19# clarifying the nature of the
OJK result. More recently, in the work of Bray and Hum
yun @4#, there has been an effort to derive the OJK theory
a systematic fashion. This approach will be discussed be
in Sec. III.

An alternative implementation of the ideas of MVZ wa
carried out in the TUG. In this case, as discussed below,
mapping of the order parameter onto an auxiliary fieldm is
motivated by the idea thatm measures the distance to th
nearest defect. Coupled with the assumption that the au
iary field is Gaussian, the equation of motion satisfied bys is
enforced, and one obtains a theory describing most of
features satisfied by the order parameter scaling function

All of these theories with auxiliary fields satisfyin
Gaussian statistics have been lumped together asGaussian
closure approximations@20#. It has been clear for some tim
that we need to have theories which go further@21,22#. Pre-
vious efforts at post-Gaussian approximations@5,6# had
some success, but are difficult to control.

How does one construct a perturbation theory expans
for the auxiliary fieldm? This theory will be unusual since
on average,m is growing with time. Thus standard polyno
mial nonlinearities inm would be a problem. As discussed
Sec. III, there are some difficult technical problems in dev
oping on expansion method which is self-consistent. T
resolution to this problem is first to choose the proper int
duction of the auxiliary fieldm, and then organize the trea
ment of the associated nonstandard nonlinear field the
through the introduction of an expansion parameterfp . At
zeroth order in this parameter, one obtains the theory du
OJK, and at second order one finds expressions for the
rections to the nontrivial exponents characterizing the ord
ing in these systems. This parameterfp is associated with
the unusual nature of the nonlinearity in the problem. Inst
of a polynomial nonlinearity, one has thesign of the field
giving the driving nonlinear terms in the equation of moti
for the auxiliary field. This expansion infp appears well
behaved order by order in perturbation theory, and in so
ways is similar to the bare expansion in the quartic coupl
in f4 field theory. One has, for example, the possibility
resummation or use of renormalization group methods.
appear to be fortunate in this case since lower-order appr
mations appear to work well, give reasonable results
anomalous dimensions, without the need for extensive r
ganization. One encounters a rather straightforward expo
tiation of logarithmic divergences. Unlike in critical phe
nomena, the logs appear for all dimensionalityd. In this case
they are driven by internal time integrations.

A key assertion in the theories developed previously
that the auxiliary field can be treated as having Gauss
statistics. It should be understood that a theory with this f
ture at zeroth order must have the property that all of
higher-order cumulants for the fieldm must vanish at this
order. It is shown here that indeed then-point cumulant is of
O@(n/2) 21# in the expansion parameter. Thus the tw
s
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point cumulantG2 , which enters the determination of th
order parameter correlation function at lowest order, is
O(0), asexpected. The four-point cumulant is ofO(1), and
so on. This has the consequence that any function of
auxiliary field m can be expressed in terms of these cum
lants, and evaluated in perturbation theory.

Turning to the question of the existence of a small para
eter, it appears that the most direct connection of the exp
sion infp to a more conventional expansion parameter is
the 1/n expansion in then-vector model. This will be dis-
cussed in detail in paper II in this series. This expansion d
not appear to be related to a 1/d expansion@23#. Thus the
method developed Ref.@24# here has more in common wit
methods in critical phenomena, where one works in the s
tial dimension of interest, as compared, for example, to the
expansion about four dimensions.

II. OVERVIEW

A. Setting up the problem

The system studied here is the domain-wall dynam
generated by the time-dependent Ginzburg-Landau mo
satisfied by a nonconserved scalar order parameterc(rW,t)

]c

]t
52G

dF

dc
1h5K@c#, ~2!

where G is a kinetic coefficient,F is a Ginzburg-Landau
effective free energy assumed to be of the form

F5E ddr S c

2
~¹c!21V~c! D , ~3!

where c.0, and the potentialV is assumed to be of the
symmetric degenerate double-well form. We expect o
these general properties ofV will be important in what fol-
lows. h is a thermal noise which is related toG by a
fluctuation-dissipation theorem. We assume that the que
is from a high temperature (TI.Tc), where the system is
disordered, to zero temperature where the noise can be s
zero ~h50!. It is believed@1# that our final results are inde
pendent of the exact nature of the initial state, provided i
a disordered state with short-ranged correlations.

If we rescale lengths and times we can put our equation
motion in the dimensionless form

L~1!c~1!52V8@c~1!#, ~4!

where the diffusion operator

L~1!5
]

]t1
2¹1

2 ~5!

is introduced along with the shorthand notation that 1
notes (r1 ,t1). Equation~1! is just the special case of th
potentialV52 1

2 c21 1
4 c4.

B. Summary

It is well established@1# that for late times following a
quench from a disordered to an ordered phase, the dyna
obey scaling, and the system can be described in terms
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single growing lengthL(t), which is characteristic of the
spacing between defects. In this scaling regime the o
parameter correlation function has a universal scaling fo

C~12![^c~1!c~2!&5c0
2F~x,t1 /t2!, ~6!

where c0 is the magnitude of the order parameter in t
ordered phase. The scaled lengthx is defined asxW5(rW1

2rW2)/L(T) where, for the nonconserved order parame
case considered here, the growth law goes asL(T);T1/2,
whereT5 1

2 (t11t2). In the case of the autocorrelation fun
tion rW15rW25rW we have@25,26#

^c~rW,t1!c~rW,t2!&'SAt1t2

T D l

, ~7!

wherel is a nontrivial nonequilibrium exponent, and eith
t1 or t2 is much larger than the other. At equal times a
short-scaled distances,

F~x![F~x,1!512auxu1••• . ~8!

This nonanalytic behavior as a function ofx is indicative of
Porod’s law @27#, as conventionally given in terms of th
Fourier transform

F~Q!'Q2~11d! ~9!

for a large scaled wave numberQ. That all of the higher-
order terms in Eq.~8! are odd inuxu is known as the Tomita
sum rule@28#. It appears, as we will discuss below, that t
largex behavior can, with proper definition ofx, be put in the
form

F~x!'
1

xn
e2~1/2!x2

~10!

wheren is a nontrivial subdominant exponent@29#.
The main results determined in this paper is an expl

determination ofF(x,t1 /t2) in perturbation theory. At zeroth
order, we obtain the OJK result

F~x,t1 /t2!5
2

p
sin21@F0~ t1 ,t2!e2~1/2!x2

#, ~11!

where

F0~ t1 ,t2!5SAt1t2

T D l0

, ~12!

wherel05d/2 andn050. Going to next orderO(1) in the
expansion, discussed in detail in Sec. X, we find no cha
in the indices l and n, but quantitative changes i
F(x,t1 /t2). At O(2), bothl andn are shifted. The exponen
l is given atO(2) by

l5
d

2
1v2

2dMd

3d/211
, ~13!

where the dimensionality dependent quantitiesv, Kd , and
Md are determined by
er

r

it

e

2v1v22dS Kd1
Md

3d/211D 511
d

2
, ~14!

Kd5E
0

1

dz
zd/221

@~11z!~32z!#d/2
, ~15!

and

Md5E
0

1

dz
zd/221

@11z#d
5

1

2

G2~d/2!

G~d!
. ~16!

The exponentn governing the algebraic component of th
largex behavior is given atO(2) by

n5v22d11S Kd1
Md

3d/211D . ~17!

At lowest order, one has the OJK resultsl5 d
2 and n50.

While Kd andv can be worked out analytically for specifi
values ofd, the expressions are not very illuminating. N
merical values forl, n and v are given in Tables I and II
along with other results for comparison@30#.

III. REVIEW OF AUXILIARY FIELD METHODS

How can one organize this problem in terms of a pert
bation theory expansion? Let us consider first the most di
method since the exercise is instructive and suggests o
approaches. Let us ignore the fluctuation fieldu in the de-
composition of the order parameter field, and replace
order parameter fieldc with an auxiliary field m via the
mapping

c5s@m#, ~18!

where s@m#, as in the TUG, satisfies the Euler-Lagran
equation for the associated stationary interface problem

TABLE I. Values of exponentl from the current theory, OJK
and the TUG.

Dimension Theory OJK TUG Best

1 0.6268 . . . 0.5 1 1a

2 1.1051 . . . 1 1.2887 1.24660.02b

3 1.5824 . . . 1.5 1.6726 1.83860.2b

Large d/2 d/2 d/2 d/2c

aExact; see Ref.@1#.
bNumerical results from Ref.@26#.
cBest guess.

TABLE II. Values of exponentn from the current theory, OJK
and the TUG. The last column gives the values of the quantityv.

Dimension Theory OJK TUG v

1 1.1596 . . . 0 1 0.4601 . . .
2 1.2492 . . . 0 0.5774 . . . 0.6877 . . .
3 1.3732 . . . 0 0.3452 . . . 0.9067 . . .

Large d(322A2) 0 0 d
2 (A221)
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d2s

dm2
[s25V8†s@m#‡. ~19!

In this equation,m is taken to be the coordinate. It will gen
erally be useful to introduce the notation

s l [
dl s

dml
. ~20!

A key point in the introduction of the fieldm is that the zeros
of m locate the zeros of the order parameter and give
positions of interfaces in the system. Locally the magnitu
of m gives the distance to the nearest defect. As a sys
coarsens and the distance between defects increases, the
cal value ofm increases linearly withL(t).

Inserting the mapping@31# given by Eq. ~18! into the
equation of motion forc given by Eq.~4!, one finds, after
using the chain rule for differentiation, an equation f
m(1):

s1~1!L~1!m~1!52s2~1!@12„¹m~1!…2#. ~21!

To obtain an idea of the nature of this equation, take
special case of ac4 potential, where one can solve for th
mapping analytically and obtain the usual interfacial ki
form

s@m#5tanh~m/A2!. ~22!

It is easy to show that for this particular potential,s2

52A2ss1 , and the equation of motion form can be writ-
ten as

L~1!m~1!5A2s„m~1!…@12„¹m~1!…2#. ~23!

The left-hand side looks like the diffusion equation, wh
the right-hand side has two types of nonlinearities. The fi
nonlinearity iss,(m) which looks like sgn(m) in the bulk.
The second nonlinearity is given by the (¹m)2 term. Work-
ing along these lines, Bray and Humayun@4# made the as-
sumption that one can make a cleaver choice of the pote
and replace2s2(m)/s1(m) by m, and then work with the
equation of motion

L~1!m~1!5m~1!@12„¹m~1!…2#. ~24!

This polynomial form looks promising . If one makes th
assumption

@12„¹m~1!…2#'
k

L2~ t1!
, ~25!

then the resulting linearized equation form is given by

L~1!m~1!5
k

L2~ t1!
m~1!. ~26!

This equation is formally the same as the one we will fi
later in the zeroth-order theory developed here, and d
corresponds to the OJK theory.
e
e
m
ypi-

e

t

ial

es

It is not clear how to obtain systematic corrections to E
~26!. Consider Eq.~24! from the point of view of dimen-
sional analysis. Sincem'L, andL'L22, one has that the
left-hand side Eq.~24! is of O(L21), while the right-hand
side is ofO(L). The only way that the right-hand side of E
~24! can be ofO(L21) is if there is an additional constrain
given by Eq.~25!, that is enforced at all orders. Formally th
reduces to the statement that the nonlinear interaction

V~1!5m~1!@12~¹m!2#2
k

L2~ t1!
m~1! ~27!

must lead to self-energy corrections which are ofO(L21).
Due to internal pairings of the¹m terms in such an expan
sion, this constraint cannot be enforced order by order,
one arrives back at the dimensional analysis argument
cussed above. Thus the assumption given by Eq.~25! is not
self-consistent without further development@32#.

One ends up concluding that the@m(¹m)2# nonlinearity
is causing the technical problems and the OJK theory is
the zeroth-order solution of this problemas posed. Since
there is reason to believe that the OJK theory is a go
approximation of the original problem, then one might co
clude that the role of the@m(¹m)2# nonlinearity is technical
and not crucial, and one should reorganize the calculation
that it plays a less prominent role. Indeed it is useful to tu
the argument around, and suggest that it is thes@m# nonlin-
earity in Eq.~23! which is important in the equation of mo
tion for m, and that its role should be emphasized.

Let us back up a bit. Suppose, instead of the rather r
mapping given by Eq.~18!, we follow MVZ and write

c5s@m#1u@m#, ~28!

wheres@m# is still the solution to the Euler-Lagrange equ
tion ~19! andu@m# is to be determined. Let us substitute th
mapping into the equation of motion for the order parame
use the chain rule as in leading to Eq.~23!, and obtain

L~1!u~1!1s1~1!L~1!m~1!

52V8@s~1!1u~1!#1s2~1!@¹m~1!#2. ~29!

Notice that the perspective is different here. This can
regarded as an equation for the fieldu. We then have the
freedom to assume thatm is driven by an equation of the
type given by Eq.~23!. However we now choose this equa
tion such that we can find a self-consistent expansion ab
the OJK result. To begin, we assume this equation of mo
is of the form

L~1!m~1!5j~ t1!s„m~1!…. ~30!

Then this is just Eq.~23! with @12(¹m)2# replaced by the
time-dependent quantityj(t).

From dimensional analysism'L, L'L22, ands'L0,
so j'L21. These restrictions are very important. Using E
~30! in Eq. ~29! for u leads to an equation of motion for th
field u(1):

L~1!u~1!52V8@s~1!1u~1!#1s2~1!@¹m~1!#2

2s1~1!j~ t1!s„m~1!…. ~31!
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The most important aspect of the solution of the last equa
for u5u@m# is that

limumu→`u@m#50. ~32!

Indeed, as far as the universal properties are concerned
is almost all we need to proceed. To understand that we
construct a solution for u with this property let us consid
the special case where we have ac4 potential. The equation
for u is given then by

Lu1~3s221!u13su21u352s2@12~¹m!2#2s1js.
~33!

In the limit of large umu, the derivatives ofs go exponen-
tially to zero, and the right-hand side of Eq.~33! is exponen-
tially small. Clearly we can construct a solution foru where
it is small, and linearize the left-hand side. Remember
that s251 away from interfaces in the bulk we have

Lu12u52s2@12~¹m!2#2s1j sgn~m!. ~34!

Notice on the left-hand side thatu has acquired a mass~52!,
and in the long-time long-distance limit the term whereu is
multiplied by a constant dominates the derivative terms:

2u52s2@12~¹m!2#. ~35!

We have dropped the term proportional toj(t) since it van-
ishes more rapidly than the other terms at large times. T
the u field picks up a mass in the scaling limit can easily
seen to be a general feature of a wide class of poten
whereq0

25V9@s56c0#.0. We then have on rather gener
principles that the fieldu must vanish rapidly as one move
into the bulk away from interfaces.

One expects that the explicit construction ofu is rather
involved, and depends on the details of the potential cho
If we restrict our analysis to investigating universal prop
ties associated with bulk ordering, we will not need to kno
the statistics ofu explicitly. If we are interested in determin
ing interfacial properties then we need to knowu in some
detail. Thus, for example, if we want to determine the cor
lation function

Cc2~12!5^@c2~1!2c0
2#@c2~2!2c0

2#&, ~36!

we will need to know the statistics of the fieldu. However, if
we are interested in quantities like

C~12, . . . ,n!5^c~1!c~2!•••c~n!& ~37!

where the points 12, . . . ,n are not constrained to be clos
together, then we do not need to knowu in detail. Why is
this? Consider, for example,

C~12!5^c~1!c~2!&5^@s~1!1u~1!#@s~2!1u~2!#&.

The point is that because the fieldu(1) is nonzero only nea
interfaces, the averagêu(1)s(2)& is down by a factor of
1/L2 relative to ^s(1)s(2)&. Out in the bulk we can use
dimensional analysis to make the following estimat
(¹m)2'O(1), s2'O(L22), s1j(t)s'O(L23), and Lu
'O(L24), wherej'L21. Using these results we find tha
the equation of motion foru can be put into the form
n

his
an
r

g

at

ls

n.
-

-

:

V8@s1u#5s2~¹m!2. ~38!

The usefulness of this equation is that it allows us to expr
the equation of motion for the order parameter, in the bu
in terms of the fieldm,

Lc52s2~¹m!2. ~39!

We will demonstrate the usefulness of this result in Sec.
Our picture therefore has them field driving the order pa-
rameter and them field satisfying the nonlinear equatio
~30!.

IV. FIELD THEORY FOR AUXILIARY FIELD

Let us consider the field theory associated with the eq
tion of motion form(rW,t). Our development will follow the
standard Martin-Siggia-Rose~MSR! @33# method in its func-
tional integral form as developed by DeDominicis and Pe
@34#. The analysis begins with the basic equation of mot
for the field m given by Eq.~30!. In the MSR method the
field theoretical development requires a doubling of ope
tors to include the fieldM which is conjugate tom. We also
organize things so that the initial fieldm0(rW) is also treated
as an independent field. Thus it is assumed thatm is zero for
t,t0 , and one must add a termd(t12t0)m0(rW1) to the right-
hand side of Eq.~30!.

Following standard procedures, averages of interest
given as functional integrals over the fieldsm, M and m0
weighted by an actionA:

^m~1!m~2!•••m~n!M ~n11!M ~n12!•••M ~n1l !&

5E DmDMDm0m~1!m~2!•••m~n!

3M ~n11!M ~n12!•••M ~n1l !eAT~m,M ,m0!/Z,

~40!

where

Z5E DmDMDm0eA~m,M ,m0!. ~41!

The action takes the form

A~m,M ,m0!52 i E d1M ~1!

3@L~1!m~1!2j~1!s~1!2d~ t12t0!m0~1!#

2 1
2 E ddr 1E ddr 2m0~rW1!g21~rW12rW2!

3m0~rW2!, ~42!

where we use the notation*d15*dt1ddr 1 , and where we
assume, as is appropriate in this case, that the initial fiel
Gaussian and has a variance given by

^m0~rW1!m0~rW2!&5g~rW12rW2!. ~43!
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We will not have to be very specific about the form of t
initial correlation functiong. It will be very convenient to
generate our correlation functions as functional derivative
terms of sources which couple to the conjugate fields. T
we introduce

S@h,H#5expE d1@h~1!m~1!1H~1!M ~1!#, ~44!

and define

Z@h,H#5E DmDMDm0eA~m,M ,m0!S@h,H#

[E DmDMDm0eAT~m,M ,m0!, ~45!

where the total action is defined

AT5A1E d1@h~1!m~1!1H~1!M ~1!#. ~46!

The fundamental equations of motion are given by the id
tities

E DmDMDm0

d

dM ~1!
eAT~m,M ,m0!50,

E DmDMDm0

d

dm~1!
eAT~m,M ,m0!50,

E DmDMDm0

d

dm0~1!
eAT~m,M ,m0!50,

which reduce to

K d

dM ~1!
AT~m,M ,m0!L

h

50,

K d

dm~1!
AT~m,M ,m0!L

h

50,

K d

dm0~1!
AT~m,M ,m0!L

h

50,

where the subscripth indicates that the average includes t
source fieldsh andH:

^ . . . &h5

E DmDMDm0eAT~m,M ,m0! . . .

Z~h,H !
.

Taking the functional derivative with respect tom just gen-
erates the original equation of motion@Eq. ~30!# with an
initial condition and a source term

d

dM ~1!
AT~m,M ,m0!52 i @L~1!m~1!2j~1!s~1!

2d~ t12t0!m0~1!#1H~1!.

The functional derivative with respect tom is given by
in
s

-

d

dm~1!
AT~m,M ,m0!5 i @L̃~1!M ~1!1j~1!sM~1!#1h~1!,

where we have introduced the quantities

L̃~1!5
]

]t1
1¹1

2,
~47!

sM~1!5s1„m~1!…M ~1!.

Finally we need the derivative

d

dm0~1!
AT~m,M ,m0!

5 iM ~rW1 ,t0!2E ddr 2g21~rW12rW2!m0~rW2!.

Inserting the results of taking these derivatives into the
erages, we obtain our fundamental equations:

2 i @L̃~1!^M ~1!&h1j~1!^sM~1!&h#5h~1! , ~48!

i @L~1!^m~1!&h2j~1!^s~1!&h

2d~ t12t0!^m0~1!&h#5H~1!, ~49!

and

i ^M ~rW1 ,t0!&h5E ddr 2g21~rW12rW2!^m0~rW2!&h . ~50!

The last equation allows one to solve for the average of
initial field in terms of the MSR fieldm,

^m0~rW1!&h5 i E ddr 2g~rW12rW2!^M ~rW2 ,t0!&h . ~51!

Equation~49! can then be written in the form

i @L~1!^m~1!&h2j~1!^s~1!&h#

52E d2P0~12!^M ~2!&h1H~1!, ~52!

where

P0~12![d~ t12t0!d~ t12t2!g~rW12rW2!. ~53!

All correlation functions of interest can be generated as fu
tional derivatives of^m(1)&h or ^M (1)&h with respect to
h(1) andH(1).

In the limit in which the source fields vanish, each term
the two fundamental equations vanish. Therefore, it is
rivatives of these equations which are of interest. Taking
functional derivative of Eq.~48! with respect toh(2) gives
the equation for the response function

GMm~12!5
d

dh~2!
^M ~1!&h , ~54!

with



e

th
c

n

int

tur-
also
ted

d in

icit.

PRE 58 1549PERTURBATION EXPANSION IN PHASE-ORDERING . . .
2 i F L̃~1!GMm~12!1j~1!
d^sM~1!&h

dh~2! G5d~12!. ~55!

Taking the functional derivative of Eq.~52! with respect to
H(2) gives

i FL~1!GmM~12!2j~1!
d^s~1!&h

dH~2! G
52E d3P0~13!GMM~32!1d~12!. ~56!

Taking the functional derivative of Eq.~52! with respect to
h(2) gives

i FL~1!Gmm~12!2j~1!
d^s~1!&h

dh~2! G
52E d3P0~13!GMm~32!. ~57!

Note that Eqs.~55! and ~56! are redundant because of th
relation

GmM~12!5GMm~21!. ~58!

Clearly we can go on and generate equations for all of
cumulants by taking functional derivatives. Let us introdu
the notation thatGA1 ,A2 , . . . .,An

(12 . . .n) is thenth-order cu-

mulant for the set of fields$A1 ,A2 , . . . .,An%, where fieldA1
has argument~1!, field A2 has argument~2!, etc. This nota-
tion is needed when we mix cumulants withm andm. As an
example

GMmmm~1234!5
d3^m~4!&h

dH~1!dh~2!dh~3!
. ~59!

As a shorthand for cumulants involving onlym fields, we
write

Gn~12•••n!5
dn21

dh~n!dh~n21!•••dh~2!
^m~1!&h .

~60!

The equations governing thenth-order cumulants are give
by

2 i @L̃~1!GMm . . . m~12 . . .n!1Q̂n~12 . . .n!#50 ~61!

and

i @L~1!Gn~12 . . .n!2Qn~12 . . .n!#

52E d1̄P0~11̄!GMm . . . m~ 1̄2 . . .n!. ~62!

The Q8s are defined by

Q̂n~12 . . .n!5j~1!
dn21

dh~n!dh~n21!•••dh~2!
^sM~1!&h ,

~63!
e
e

Qn~12 . . .n!5j~1!
dn21

dh~n!dh~n21!•••dh~2!
^s~1!&h .

~64!

With this notation the equations determining the two-po
functions can be written as

2 i @L̃~1!GMm~12!1Q̂2~12!#5d~12!, ~65!

i @L~1!G2~12!2Q2~12!#52E d1̄ P0~11̄!GMm~ 1̄2!.

~66!

We see thatGMm . . . m andGmm. . . m are coupled.
The point now is to show that there is a consistent per

bation expansion where the higher-order cumulants are
of higher order in some ordering parameter. To get star
we need to expressQ̂1(12) andQ1(12) in terms of the fun-
damental cumulants of them field. The first step in this di-
rection is to show that these quantities can be expresse
terms of the probability distribution

Ph~x,1!5^d„x2m~1!…&h5
^d„x2m~1!…S@h,H#&

Z@h,H#
,

~67!

where the averages without the subscripth are weighted byA
not AT , and the dependence on the source fields is expl
The average overs(m) can then be written

^s„m~1!…&h5E dx s~x!Ph~x,1! ~68!

and

Q1~1!5E dx j~1!s~x!Ph~x,1!. ~69!

Evaluation of Q̂1(1) is only slightly more involved. We
have, using Eq.~47!, that

^sM~1!&h5^M ~1!s1„m~1!…&h

5
1

Z@h,H#

d

dH~1!
^s1„m~1!…S@h,H#&

5
1

Z@h,H#

d

dH~1! FZ@h,H#E dx s1~x!Ph~x,1!G
5F ^M ~1!&h1

d

dH~1!G E dx s1~x!Ph~x,1!. ~70!

Using this result in Eq.~63! with n51,

Q̂1~1!5E dx j~1!s1~x!F ^M ~1!&h1
d

dH~1!GPh~x,1!.

Then any perturbation theory expansion forPh(x,1) will
lead immediately to an expansion forQ̂1(1) andQ1(1). We
can then obtainQ̂n andQn by functional differentiation.
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V. PERTURBATION THEORY EXPANSION

The perturbation theory expansion forPh(x,1) is straight-
forward. Using the integral representation for thed function
we have

Ph~x,1!5E dk

2p
e2 ikxF~k,h,1! ~71!

where

F~k,h,1!5^eH~1!&h , ~72!

andH(1)[ ikm(1) . The average of the exponential is pr
cisely of the form which can be rewritten in terms of cum
lants:

F~k,h,1!5expF (
s51

`
1

s!
GH

~s!~1!G , ~73!

whereGH
(s)(1) is thesth-order cumulant for the fieldH(1).

SinceH(1) is proportional tom(1), these are, up to factor
of ik to thesth power, just the cumulants for them field:

GH
~s!~1!5~ ik !sGs~11 . . . 1!. ~74!

We can therefore write

F~k,h,1!5expF (
s51

`
~ ik !s

s!
Gs~11 . . . 1!G . ~75!

Consider first the lowest-order contribution toQn , which
does not vanish with the external fieldsh,H:

Q2~12!5E dx j~1!s~x!
d

dh~2!
Ph~x,1!. ~76!

We will assume, as we will show self-consistently, that
zero external field,nth order cumulants are of order (n/2)
21 in an expansion parameter we will develop. Expand
F(k,h,1) in powers of the cumulants withn.2, and keeping
terms up to the four-point cumulant, we obtain

Ph~x,1!5F12
1

3!
G3~111!

d3

dx3
1

1

4!
G4~1111!

d4

dx4
1•••G

3Ph
~0!~x,1! ~77!

where

Ph
~0!~x,1!5E dk

2p
F0~k,h,1!e2 ikx ~78!

and

F0~k,h,1!5eikG1~1!e2~1/2!k2G2~11!. ~79!

Then, after taking the derivative with respect toh(2), setting
the external fields to zero, and neglecting all cumulants w
n.2, we obtain

F0~k,h50,1!5e2~1/2!k2S2~1!, ~80!
g

h

and

Q2
~0!~12!5E dx j~1!s~x!

3E dk

2p
e2 ikxikG2~12!e2~1/2!k2S2~1!

where we have defined, in zero external field,

S2~1![G2~11!5^m2~1!&. ~81!

There are several points to make here. Let us begin with
separation of the factorj(1)s(x) into a piece which contrib-
utes to the bulk universal properties and a part which d
not. Note that in general we can writes(x) in the form

s~x!5c0sgn~x!1s̃~x!, ~82!

wherec0 is the bulk ordered value of the magnitude of t
order parameter, ands̃(x) goes to zero exponentially asuxu
→`. For thec4 potentialc051, and

s̃~x!52sgn~x!F 2

eA2uxu11
G . ~83!

This means thatQ2
(0)(12) can be written as the sum of tw

pieces:

Q2
~0!~12!5Q2

~0,B!~12!1Q2
~0,N!~12!, ~84!

where

Q2
~0,B!~12!5j~1!c0G2~12! ~85!

3E dx sgn~x!E dk

2p
ike2 ikxe2~1/2!k2S2~1!

~86!

and

Q2
~0,N!~12!5G2~12!E dx j~1!s̃~x!

3E dk

2p
ike2 ikxe2~1/2!k2S2~1!.

In both contributions we have the integral

E dk

2p
e2 ikxike2~1/2!k2S2~1!52

d

dxE dk

2p
e2 ikxe2~1/2!k2S2~1!

52
d

dx
F0~x,1!, ~87!

whereF0(x,1) is the Fourier transform ofF0(k,h50,1):

F0~x,1!5E dk

2p
e2 ikxe2~1/2!k2S2~1!5

e2x2/@2S2~1!#

A2pS2~1!
.

~88!
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In evaluating Q2
(0,N)(12) we can take the derivative o

F0(x,1) and expand in inverse powers ofS2(1) to obtain, to
leading order,

Q2
~0,N!~12!5G2~12!E dx j~1!s̃~x!

x

A2pS2
3/2~1!

,

where it is crucial thats̃(x) vanish for largeuxu so that thex
integral exists. Turning toQ2

(0,B)(12), we have

Q2
~0,B!~12!5j~1!c0G2~12!E dx sgn~x!F2

d

dx
F0~x,1!G .

In this case we integrate by parts in the integral overx and
use (d/dx)sgn(x)52d(x) to obtain

Q2
~0,B!~12!5j~1!c0G2~12!2F0~0,1!

5j~1!c0G2~12!A 2

pS2~1!
. ~89!

The key observation is thatQ2
(0,N)(12) is down by a factor of

1/L2 relative toQ2
(0,B)(12). It should be clear that this is

general result which will hold order by order in perturbati
theory. As far as the bulk ordering properties are concer
we can replaces(x)→c0sgn(x) . Thus we could have
started with the equation of motion for the fieldm

L~1!m~1!5j~1!c0sgn~m~1!! ~90!

if we focus only on bulk ordering properties@35#.
Turning to the other nonlinear quantityQ̂2 , we have, in

general,

Q̂2~12!5E dx j~1!s1~x!

3FGMm~12!1^M ~1!&h

d

dh~2!

1
d2

dh~2!dH~1!GPh~x,1!. ~91!

Clearly, term by term in our expansion we will find that th
leading contribution comes froms1(x)→c02d(x) with the
remaining terms leading to contributions which are of high
order in 1/L. We therefore need only consider

Q̂2~12!5j~1!c0E dx 2d~x!

3FGMm~12!1^M ~1!&h

d

dh~2!

1
d2

dh~2!dH~1!GPh~x,1!

if we are only interested in the bulk universal properties.
A key observation is that, as we analyze contributions

Qn or Q̂n , we will find that each term consists of products
correlation functions and response functions with legs t
together by factors defined by
d

r

o

d

fp~1![E dx sgn~x!E dk

2p
ik2p11e2 ikxF0~k,1!

52E dk

2p
k2pe2~1/2!k2S2~1!5S 22

d

dS2~1! D
p

f0~1!,

~92!

where we have used an integration by parts in going from
first to the second line and defined

f0~1!52E dk

2p
e2~1/2!k2S2~1!5A 2

pS2~1!
. ~93!

Each term in the perturbation theory expansion forQn or Q̂n
will be proportional to factors offp . The perturbation ex-
pansion is ordered by the sum of the labelsp on fp . Thus a
contribution with insertionsf1f2f1, each factor typically
associated with different times, is ofO(4). Weshall refer to
this expansion as thef expansion. It should be emphasized
that at this stage that this is aformal expansion. At ordern it
is true thatfp'L2(2p11) which is small; however, it will be
multiplied, depending on the quantity expanded, by posit
factors ofL(t) such that each term in the expansion infp
has the same overall leading power with respect toL(t).

To see how this expansion works let us consider first
two-point quantityQ2(12), defined by

Q2~12!5E dxj~1!sgn~x!
dPh~x,1!

dh~2!
. ~94!

Using Eqs.~71! and ~75!, and taking the derivatives with
respect toh(2), wefind, in the case of zero external fields

Q2~12!5j~1!E dx sgn~x!E dk

2p
e2 ikxF~k,h50,1!

3(
s50

`
~ ik !2s11

~2s11!!
G2s12~11 . . . 12!. ~95!

Since all odd cumulants vanish in the case of zero exte
fields, and

F~k,h50,1!5expF (
s51

`
~21!sk2s

~2s!!
S2s~1!G ~96!

where

S2s~1!5G2s~11 . . . 1!. ~97!

Let us define the set of vertices

Vp~1!5E dx sgn~x!E dk

2p
ik2p11e2 ikxF~k,h50,1!,

~98!

which reduces, after following the same set of steps in
ducing the original expression forfp , to

Vp~1!52E dk

2p
k2pF~k,h50,1!, ~99!
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which is independent of position. Then the quantityQ2(12),
which appears in the equation of motion forG2(12), is given
in the form

Q2~12!5j~1!c0(
s50

`
~21!s

~2s11!!
G2s12~11 . . . 12!

3E dx sgn~x!E dk

2p
e2 ikxik2s11F~k,1!

5j~1!(
s50

`
~21!s

~2s11!!
Vs~1!G2s12~11 . . . 12!,

~100!

where we have used the definition ofVs(1) given by Eq.~98!
in the last step.

It should be clear that the verticesVs(1) are of at least
ba
y

in

ou
re
O(s) in the f expansion. By direct expansion ofF(k,h
50,1) aboutF0(k,h50,1) we obtain

Vs~1!5fs~1!1
S4~1!

4!
fs12~1!2

S6~1!

6!
fs13~1!

1fs14~1!F S4
2~1!

2~4! !2
1

S8~1!

8! G1•••. ~101!

Then, since we will findSl (1)'O@(l /2)21#, the terms in
the expansion forVs are of O(s), O(s13), O(s15), and
O(s16), respectively.

Let us turn next toQ̂2(12) given by Eq.~91!. In the limit
of zero external fields we can set the term proportional
^M (1)& to zero, and then evaluate the second derivativ
d2Ph(x,1)/dh(2)dH(1). After a significant amount of alge
bra we obtain@36#
Q̂2~12!5E dx 2j~1!c0d~x!E dk

2p
e2 ikxF~k,1!FGMm~12!1(

s51

`
~ ik !s

s!
Gmm. . . mMm

~s12! ~11 . . . 112!G
5E dx2j~1!c0d~x!E dk

2p
e2 ikxF~k,1!(

s50

`
~ ik !s

s!
Gmm. . . mMm

~s12! ~11 . . . 112!

5j~1!c0(
s50

`
~21!s

~2s!!
Vs~1!Gmm. . . mMm

~2s12! ~11 . . . 112!. ~102!
ct
Before going on to discuss the structure of the pertur
tion theory at higher order, let us made sure the theor
sensible at zeroth order where, from Eqs.~100! and ~102!,

Q2
~0!~12!5j~1!c0f0~1!G2~12!, ~103!

Q̂2
~0!~12!5j~1!c0f0~1!GMm~12!. ~104!

VI. ZEROTH-ORDER THEORY
FOR TWO-POINT CORRELATION FUNCTIONS

The equations of motion at zeroth order for the two-po
correlation function is given by Eqs.~61! and ~62!, with Q̂2
andQ2 replaced by Eqs.~104! and ~103!. Thus we have

2 i @L~1!1v0~1!GMm
~0! ~12!5d~12!, ~105!

i @L~1!2v0~1!#G2
~0!~12!52E d1̄P0~11̄!GMm

~0! ~ 1̄2!,

~106!

where we have defined

v0~1!5j~1!c0f0~1!. ~107!

The first step in the solution to these equations is to F
rier transform over space. Taking the equation for the
sponse function first, we obtain
-
is

t

-
-

2 i F ]

]t1
2q21v0~ t1!GGMm

~0! ~q,t1t2!5d~ t12t2!.

~108!

This first-order differential equation has the solution

GMm
~0! ~q,t1t2!52 iu~ t22t1!expF E

t2

t1
dt@q22v0~t!#G

52 iu~ t22t1!R~ t2 ,t1!e2q2~ t22t1!, ~109!

and we have defined

R~ t1 ,t2!5e*
t2

t1 dt v0~t!. ~110!

Taking the inverse Fourier transform, using

E ddq

~2p!d
eiqW •rWe2q2~ t12t2!5

e2r 2/@4~ t12t2!#

@4p~ t12t2!#d/2
, ~111!

we obtain

GMm
~0! ~r ,t1t2!52 iu~ t22t1!R~ t2 ,t1!

e2r 2/@4~ t22t1!#

@4p~ t22t1!#d/2
.

~112!

It is straightforward to show explicitly the result we expe
from symmetry considerations:
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GmM
~0! ~r ,t1t2!52 iu~ t12t2!R~ t1 ,t2!

e2r 2/@4~ t12t2!#

@4p~ t12t2!#d/2
.

~113!

Let us turn our attention to the correlation function. It
useful to introduce the inverse propagators

GMm
0,21~12!52 i @L̃~1!1v0~1!#d~12!, ~114!

GmM
0,21~12!5 i @L~1!2v0~1!#d~12!, ~115!

which allows one to write the equation for the correlati
function in the form

E d1̄ GmM
0,21~11̄!G2

~0!~ 1̄2!52E d1̄P0~11̄!GMm
~0! ~ 1̄2!.

~116!

Multiplying from the left byGmM
(0) and using the definition o

the inverse gives the symmetric form

G2
~0!~12!52E d1̄E d2̄GmM

~0! ~11̄!GmM
~0! ~22̄!P0~ 1̄ 2̄!.

~117!

Taking the Fourier transform and inserting the results for
propagators andP0 , we obtain

G2
~0!~q,t1t2!5u~ t12t0!u~ t22t0!e2q2~ t11t222t0!

3R~ t1 ,t0!R~ t2 ,t0!g̃~q!, ~118!

whereg̃(q) is the Fourier transform of the initial correlatio
function. Henceforth we will suppress writing the step fun
tions in the correlation function. Inverting the Fourier tran
form, we obtain

G2
~0!~r ,t1t2!5R~ t1 ,t0!R~ t2 ,t0!E ddq

~2p!d
eiqW •rWg̃~q!e22q2T,

~119!

where it is convenient to introduce

T5
t11t2

2
2t0 . ~120!

While we are primarily interested in the long-time scali
properties of our system, we can retain some control over
influence of initial conditions and still be able to carry o
the analysis analytically if we introduce the initial conditio

g̃~q!5g0e2~1/2!~ql !2
~121!

or

g~rW !5g0

e2~1/2!~r /l !2

~2pl 2!d/2
. ~122!

Inserting this form into Eq.~119!, and doing the wave-
number integration, we obtain
e

-
-

e

G2
~0!~rW,t1t2!5R~ t1 ,t0!R~ t2 ,t0!

g0

@2p~ l 214T!#d/2

3e2
1
2 r 2/~ l 214T!. ~123!

In the long-time limit this reduces to

G2
~0!~r ,t1t2!5R~ t1 ,t0!R~ t2 ,t0!g0

e2r 2/8T

~8pT!d/2
. ~124!

Let us turn now to the quantityR(t1 ,t2) defined by Eq.
~110!. We have assumed thatj(t)'1/L(t) and we havef0
'1/L(t), so for long times we can write

v0~ t !5j~ t !c0f0~ t !5
v

tc1t
, ~125!

wherev is a constant we will determine, andtc is a short-
time cutoff which depends on details of the earlier-time ev
lution. Evaluating the integral

E
t2

t1
dt v0~t!5E

t2

t1
dt

v

tc1t
5v lnS t11tc

t21tc
D , ~126!

we obtain

R~ t1 ,t2!5S t11tc

t21tc
D v

. ~127!

Inserting this result back into Eq.~124! leads to the expres
sion for the correlation function

G2
~0!~r ,t1t2!5g~0!S t11tc

t01tc
D vS t21tc

t01tc
D v e2r 2/8T

~8pT!d/2
.

~128!

If we are to have a self-consistent scaling equation, then
autocorrelation function (r 50), at large equal timest15t2
5t, given by

S2
~0!~ t !5g0S t

t01tc
D 2v 1

~8pt !d/2

5t2v2d/2
1

~ t01tc!
2v

g0

~8p!d/2
, ~129!

must have the formS2
(0)(t)5A0t. Comparing we see the

exponentv must be given by

v5
1

2 S 11
d

2D , ~130!

and the amplitude by

A05
1

~ t01tc!
2v

g0

~8p!d/2
. ~131!

One question which arises is whether the time depende
in v0(t) should be viewed as externally driven or se
consistently developed. Rephrasing this question: Does
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time evolution form(t) evolve out of the early-time instabil
ity? It is instructive to see that this follows in a natural fas
ion. Suppose instead of Eq.~125! we assume

v0~ t !5
v̄

S2~ t !
, ~132!

which is consistent with

c0j~ t !5
v0~ t !

f0~ t !
5v̄A p

2S2~ t !
~133!

sincef0(t)5A2/pS2(t). Inserting this result forv0(t) into
Eq. ~110! and Eq.~119! with r 50, one finds, at equal time
t15t25t, a self-consistent equation for the zeroth-ord
quantityS2

(0)(t):

S2
~0!~ t !5expS 2v̄E

t0

t dt

S2
~0!~t !

D S2
~0!~ t0!

@11a~ t2t0!#d/2
,

~134!

where

S2
~0!~ t0!5

g0

~2pl 2!d/2
~135!

and

a[4/l 2. ~136!

This equation is solved in the Appendix, with the result

S2
~0!~ t !5S S2

~0!~ t0!2
2v̄

a~11d/2!
D @11a~ t2t0!#2d/2

1
2v̄

a~11d/2!
@11a~ t2t0!#, ~137!

and v̄ is still undetermined. There are several interest
results which follow. If we look at the long-time limit o
v0(t), we obtain

v0
21~ t !5

S2
~0!~ t !

v̄
5

2

a~11d/2!
@11a~ t2t0!#. ~138!

If we compare with Eq.~125!, we regain Eq.~130!, and find

tc5
1

a
2t0 . ~139!

Thus our procedure is consistent, and the system gove
by Eqs.~118! and ~132! is driven to grow as desired. Sinc
S2

(0)(t) is now a known function of time we can use E
~134! to evaluateR(t,t0), and obtain the complete solutio
to this zeroth-order problem over the entire time regime
-

r

g

ed

G2
~0!~rW,t1t2!5

g0

@2p~ l 214T!#d/2
e2~1/2!r 2/~ l 214T!

3FS2
~0!~ t1!

S2
~0!~ t0!

S2
~0!~ t2!

S2
~0!~ t0!

@11a~ t12t0!#d/2

3@11a~ t22t0!#d/2G 1/2

.

In the long-time limit this can be written, using definitio
~139! for tc , in the form

G2
~0!~r ,t1t2!5A0@~ t11tc!~ t21tc!#

~1/2!~11d/2!
e2r 2/8T

Td/2
,

~140!

with

A05
2v̄

11d/2
. ~141!

Notice that this result forA0 differs from the result given by
Eq. ~131!, and does not depend on the initial conditions. T
is evidence that the coefficientA0 is nonuniversal. Note, if
we choose to enforce the condition^(¹m)2&51 at late times
@see Eq.~25!# we can fix the parameterv̄ at this order, with
the result

v̄5
2

d S 11
d

2D . ~142!

The general expression for the correlation function can
rewritten in the convenient form

G2
~0!~r ,t1t2!5AS2

~0!~ t1!S2
~0!~ t2!F0~ t1t2!e2~1/2!r 2/~ l 214T!

~143!

where, using Eq.~139! for 1/a,

F0~ t1t2!5SA~ t11tc!~ t21tc!

T1tc1t0
D d/2

. ~144!

The nonequilibrium exponent is defined in the long-tim
limit by

G2
~0!~0,t1t2!

AS2
~0!~ t1!S2

~0!~ t2!
5S A~ t11tc!~ t21tc!

T1t01tc
D lm

, ~145!

and we obtain the OJK result

lm5
d

2
. ~146!

We put the subscriptm on l to indicate the exponent asso
ciated withG2(12). In generalG2(12) and the order param
eter correlation functionC(12) need not share the same e
ponents.

Looking at equal times, we have that
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f 0~x!5
G2

~0!~r ,tt !

S2
~0!~ t !

5e2x2/2, ~147!

where the scaled length is defined byxW5rW/4t . f 0(x) is just
the well known OJK result for the scaled auxiliary corre
tion function.

VII. PERTURBATION THEORY
FOR FOUR-POINT CUMULANTS

In order to see how things go at higher order in pertur
tion theory, it is useful to look at the lowest nonzero appro
-
-

mation for the four-point cumulants which enters into t
O(2) correction for the two-point cumulant. In order to com
pute G4(1234) andGMmmm(1234) toO(1) in perturbation
theory, we see from Eqs.~61! and~62! that we must evaluate

Q4~1234!5
d3

dh~4!dh~3!dh~2!
j~1!c0

3E dx sgn~x!Ph~x,1!,

and
Q̂4~1234!5
d2

dh~4!dh~3!
Q̂2~12!

5
d2

dh~4!dh~3!
E dx 2j~1!d~x!FGMm~12!1^M ~1!&h

d

dh~2!
1

d2

dh~2!dH~1!GPh~x,1!

5E dx 2j~1!d~x!FGMmmm~1234!Ph~x,1!1GMm~12!
d2

dh~4!dh~3!
Ph~x,1!

1GMm~13!
d2

dh~2!dh~4!
Ph~x,1!1GMm~14!

d2

dh~2!dh~3!
Ph~x,1!1

d4

dh~4!dh~3!dh~2!dH~1!
Ph~x,1!G

~148!

to O(1). Assuming, as we will show self-consistently, thatGn'O@(n/2)21# andVn'O(n), one easily finds that theO(1)
contributions toQ4 andQ̂4 are given by

Q4
~1!~1234!5v0~1!G4~1234!2v1~1!G2~14!G2~13!G2~12! ~149!

and

Q̂4
~1!~1234!5v0~1!GMmmm~1234!2v1~1!@GMm~12!G2~13!G2~14!1GMm~13!G2~12!G2~14!1GMm~14!G2~12!G2~13!

1G2~14!GMmmm~1123!1G2~13!GMmmm~1124!1G2~12!GMmmm~1134!#, ~150!
where we have introduced the notation

vp~1!5j~1!c0fp~1!. ~151!

For future reference it is not difficult to work out theO(2)
contributions toQ4 andQ̂4 given by

Q4
~2!~1234!52

v1~1!

2
@G4~1134!G2~12!

1G4~1124!G2~13!1G4~1123!G2~14!#

~152!
and

Q̂4
~2!~1234!52

v1~1!

2
@G4~1134!GMm~12!

1G4~1124!GMm~13!1G4~1123!GMm~14!#

2v1~1!@GMmmmm~1134!G2~12!

1GMmmmm~1124!G2~13!

1GMmmmm~1123!G2~14!#. ~153!

Using Eqs.~150! and~61!, we easily find the determining
equation forGMmmm at lowest nontrivial order:
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E d1̄ GMm
21,0~11̄!GMmmm~ 1̄234!

1 iv1~1!@GMm~12!G2~13!G2~14!

1GMm~13!G2~12!G2~14!

1GMm~14!G2~12!G2~13!#50. ~154!

This equation is easily integrated to give

GMmmm~1234!5E d1̄ GMm
~0! ~11̄!@2 iv1~ 1̄!#

3@GMm~ 1̄2!G2~ 1̄3!G2~ 1̄4!

1GMm~ 1̄3!G2~ 1̄2!G2~ 1̄4!

1GMm~ 1̄4!G2~ 1̄2!G2~ 1̄3!#. ~155!

Inserting Eq.~149! into Eq. ~62!, we have

GmM
21,0~11̄!G4~ 1̄234!1 iv1~1!G2~12!G2~13!G2~14!

52P0~11̄!GMmmm~ 1̄234!, ~156!

where an integration over repeated barred indices here
below is assumed. This can be integrated up to give

G4~1234!52GmM
~0! ~11̄!P0~ 1̄ 2̄!GMmmm~ 2̄234!

1GmM
~0! ~11̄!~2 iv1~ 1̄!!G2~ 1̄2!G2~ 1̄3!G2~ 1̄4!.

~157!

Inserting the result forGMmmmgiven by Eq.~155! and using
Eq. ~117!, gives the result

G4~1234!5G2
~0!~11̄!@2 iv1~ 1̄!#

3@GMm~ 1̄2!G2~ 1̄3!G2~ 1̄4!

1GMm~ 1̄3!G2~ 1̄2!G2~ 1̄4!

1GMm~ 1̄4!G2~ 1̄2!G2~ 1̄3!#

1GMm
~0! ~ 1̄1!„2 iv1~ 1̄!…G2~ 1̄2!G2~ 1̄3!G2~ 1̄4!.

~158!

If we evaluate all of the two-point correlations inG4 and
GMmmmat lowest order, we obtain our lowest-order appro
mation for the four-point quantities. Notice thatG4 is prop-
erly symmetric under interchange of any two of its labels

VIII. STRUCTURE OF PERTURBATION THEORY
AT HIGHER ORDER

In order to understand the structure of the perturbat
theory, one can rather easily see that we should consider
classes of contributions to
nd

-

n
o

Qn~12 . . .n!5
dn21

dh~n!dh~n21!•••dh~2!

3F E dxj~1!s1~x!E dk

2p
e2 ikxF~k,h,1!G .

~159!

The first class corresponds to all 2n21 derivatives with re-
spect toh acting onF(k,h,1), to give, in the zero externa
field limit, a product of two-point correlation functions of th
form

Q2n~12, . . . ,2n!

5j~1!c0Vn21~1!G2~12!G2~13!, . . .G2~1,2n!.

There is another set of contributions where all of the deri
tives except the first acts on the factor multiplyingF(k,h,1),
and gives a contribution

Q2n~12, . . . ,2n!5j~1!c0V0~1!G2n~123, . . . ,2n!.

Since each of these terms is of the same order infp , we
easily find the proposed resultG2p'fp21 . A very similar
analysis follows for the case ofQ̂2n .

IX. TWO-POINT CORRELATION FUNCTION
AT HIGHER ORDER

Following the same procedures, it is easy to find that
next order contribution toQ2 , andQ̂2 is of O(2) and given
by

Q2
~2!~12!52

v1~1!

3!
G4~1112!, ~160!

Q̂2
~2!~12!52

v1~1!

2
GMmmm~1112!. ~161!

Inserting Eqs.~104! and ~161! into Eq. ~65! gives the equa-
tion for the response function to second order:

GMm
21,0~11̄!GMm~ 1̄2!1 i

v1~1!

2
GMmmm~1112!5d~12!.

Similarly, the equation determining the correlation functi
to second order is given by

GmM
21,0~11̄!G2~ 1̄2!1 i

v1~1!

3!
G4~1112!

52P0~11̄!GMm~ 1̄2!.

These equations can be integrated to give

GMm~12!5GMm
~0! ~12!1GMm

~0! ~11̄!
2 iv1~ 1̄!

2

3 GMmmm~ 1̄1̄1̄2! ~162!

and
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G2~12!52GmM
~0! ~11̄!P0~ 1̄ 2̄!GMm~ 2̄2!

1GmM
~0! ~11̄!

2 iv 1̄~1!

3!
G4~ 1̄1̄1̄2!. ~163!

Inserting Eq.~162! for GMm into Eq. ~163! gives

G2~12!5G2
~0!~12!1G2

~0!~11̄!
2 iv1~ 1̄!

2
GMmmm~ 1̄1̄1̄2!

1GmM
~0! ~11̄!

2 iv1~ 1̄!

3!
G4~ 1̄1̄1̄2!. ~164!

Using ourO(1) result forGMmmm gives theO(2) result for
the response function

GMm~12!5GMm
~0! ~12!1GMm

~0! ~11̄!SMm
~2! ~ 1̄ 2̄!GMm

~0! ~ 2̄2!,
~165!

where the lowest-order self-energy contribution is given

SMm
~2! ~12!5 1

2 @2 iv1~1!#GMm
~0! ~12!G2

~0!~12!2@2 iv1~2!#.
~166!

Using the results forGMmmm and G4 at O(1) leads to the
O(2) result for the correlation function

G2~12!5G2
~0!~12!1G2

~2,1!~12!1G2
~2,1!~21!1G2

~2,2!~12!,

where

G2
~2,1!~12!5G2

~0!~11̄!SMm
~2! ~ 1̄2̄!GMm

~0! ~ 2̄2! ~167!

and

G2
~2,2!~12!52GmM

~0! ~11̄!P~2!~ 1̄2̄!GMm
~0! ~ 2̄2!. ~168!

The self-energy is the same as for the response function

P~2!~12!52
1

3!
@2 iv1~1!#G2

~0!~12!3@2 iv1~2!#.

~169!

We need to evaluateG2
(2,1) andG2

(2,2) . The integrations over
space, ind dimensions, are straightforward since they
volve products of displaced Gaussians. After rescaling
internal time integrationst̄ 15Ty1 , t̄ 25Ty2 , T5 1

2 (t11t2),
we obtain

G2
~2,1!~12!5AS0~1!S0~2!2d21

3v2F0~ t1t2!J1~x,t1 /T,T!,

J1~x,t1 /T,T!5E
t0 /T

t1 /T

dy1E
t0 /T

y1
dy2R1~y1 ,y2!

3e2~1/2!g1~y1 ,y2!x2
,

nd

-
e

R1~y1 ,y2!5
y1

d/221y2
d/221

@~y11y2!~3y12y22~y12y2!2!#d/2
,

G2
~2,2!~12!5AS0~1!S0~2!

2d21

3
v2F0~ t1t2!,J2~x,t1 ,t2!,

J2~x,t1 ,t2!5E
t0 /T

t1 /T

dy1E
t0 /T

t2 /T

dy2R2~y1 ,y2!

3e2~1/2!g2~y1 ,y2!x2
,

R2~y1 ,y2!5
y1

d/221y2
d/221

@~y11y2!2~32y12y2!#d/2
,

where we have chosenx25r 2/4T and

g1~y1 ,y2!5
3y12y2

3y12y22~y12y2!2

and

g2~y1 ,y2!5
3

32y12y2
.

The first thing we should do with this result is look at th
contribution at this order to the onsite equal-timet15t25t
correlation function given by

S2~ t !5S2
~0!~ t !12G2

~2,1!~11!1G2
~2,2!~11!

5S2
~0!~ t !F112dv2J1~0,1,t !1

2d

6
v2J2~0,t,t !G

where we have the integrals

J1~0,1,t !5E
t0 /t

1

dy1E
t0 /t

y1
dy2R1~y1 ,y2!,

J2~0,t,t !5E
t0 /t

1

dy1E
t0 /t

1

dy2R2~y1 ,y2!.

The key point here is thatJ1(0,1,t) and J2(0,t,t) are loga-
rithmically divergent att→`. One can show to logarithmic
order that

J1~0,1,t !5Kdln~ t/t0!1•••,

where

Kd5E
0

1

dz
zd/221

@~11z!~32z!#d/2
,

and
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J2~0,t,t !5
2

3d/2
Mdln~ t/t0!1•••,

where

Md5E
0

1

dz
zd/221

@11z#d
5

1

2

G2~d/2!

G~d!
.

We have then that

S2~1!5S2
~0!~ t !F11v22dS Kd1

Md

3d/211D ln~ t/t0!1•••G ,

and a simple exponentiation of this result gives

S2~1!5S2
~0!~ t !S t

t0
D v22d@Kd1~Md /3d/211!!

~11••• !.

For self-consistency we must determinev at this order. Re-
membering that at lowest order

S2
~0!~ t !5A0t2v2d/2,

we require that

S2~1!5A0S t

t0
D 2v2d/21v22d@Kd1~Md/3d/211!#

~11••• !5At

which determinesv at this order:

2v1v22dS Kd1
Md

3d/211D 511
d

2
. ~170!

Then, for example, ford52

K25 1
4 ln 3, M25 1

2

and

v5
A112 ln 314/921

ln 312/9
50.687687370 . . . .

For larged analytical progress leads to the results

Kd'
2

d

1

2d
1•••,

Md'A2p

d

1

2d
1•••,

and

v5
d

2
~A221!.

A numerical determination ofv shows that it is approxi-
mately linear withd over the whole range ofd.
The t/t0→` singularity inG2(12) atO(2) can be regu-
lated by turning our attention fromG2(12) to the quantities
F(t1t2) and f (x,t1 /t2) defined by

G2~12!5AS~1!S~2!F~ t1t2! f ~x,t1 /t2! ~171!

and the constraintf (x50,t1 /t2)51. If we write

G2~12!5G2
~0!~12!1DG2~12!

and

S2~1!5S2
~0!~1!1DS2~1!,

then

F~ t1t2! f ~x,t1 /t2!5
G2~12!

AS2~1!S2~2!

5F~0!~ t1 ,t2! f 0~x!

3S 12
1

2 FDS2~1!

S2
~0!~1!

1
DS2~2!

S2
~0!~2!

G D
1

DG2~12!

AS2
~0!~1!S2

~0!~2!
. ~172!

We can then separate the contribution to the on-site corr
tion function F(t1 ,t2) from the generalx dependence and
write

F~ t1 ,t2!5F0~ t1 ,t2!@11v22dDF~ t1 ,t2!#, ~173!

f ~x,t1 /t2!5 f 0~x!@11v22dW~x,t1 /t2!#, ~174!

where

DF5 1
2 F11 1

6 F2 ,

F15 1
2 E

t0 /T

t1 /T

dy1E
t0 /T

y1
dy2R1~y1 ,y2!

1 1
2 E

t0 /T

t2 /T

dy1E
t0 /T

y1
dy2R1~y1 ,y2!

2 1
2 E

t0 /t1

1

dy1E
t0 /t1

y1
dy2R1~y1 ,y2!

2 1
2 E

t0 /t2

1

dy1E
t0 /t2

y1
dy2R1~y1 ,y2!, ~175!
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F25 1
6 E

t0 /T

t1 /T

dy1E
t0 /T

t2 /T

dy2R2~y1 ,y2!2 1
12 E

t0 /t1

1

dy1E
t0 /t1

1

dy2R2~y1 ,y2!2 1
12 E

t0 /t2

1

dy1E
t0 /t2

1

dy2R2~y1 ,y2!

and

W~x,t1 /t2!5 1
2 E

0

t1 /T

dy1E
0

y1
dy2R1~y1 ,y2!@e2 ~1/2!Dg1x2

21#1 1
2 E

0

t2 /T

dy1E
0

y1
dy2R1~y1 ,y2!@e2 ~1/2! Dg1x2

21#

1 1
6 E

0

t1 /T

dy1E
0

t2 /T

dy2R2~y1 ,y2!@e2 ~1/2!Dg2x2
21# ,
r

r

r

out
tion
on-
where

Dg15g1~y1 ,y2!215
~y12y2!2

3y12y22~y12y2!2

and

Dg25g2~y1 ,y2!215
y11y2

32y12y2
.

Let us first look first atDF(t1 ,t2) and the integralsF1
and F2 . An investigation ofF1 shows that it is a regula
quantity for t1@t2 or t2@t1 . Turning toF2 , however, one
finds that it is logarithmically divergent in these limits:

F25
2Md

3d/2
lnSAt1t2

T D 1••• .

This means that to second order we have

F~ t1 ,t2!5SAt1t2

T D d/2F11v2
2dMd

3d/211
lnSAt1t2

T D G ,

which can be exponentiated to give

F~ t1 ,t2!5SAt1t2

T D lm

~11••• !, ~176!

where

lm5
d

2
1v2

2dMd

3d/211
. ~177!

It is just this expression forl discussed in Sec. II.
Turning next tof (x,t1 /t2), one of the first things to note

is that it is for smallx. Looking at the first term in the powe
series expansion inx2, we obtain

W~x,t1 /t2!52 1
2 x2@ I 1

2 I 1
~2!~ t1 /T!1 1

2 I 1
~2!~ t2 /T!

1 1
6 I 2

~2!~ t1 /t2!#,

where
I 1
~2!~ t1 /T!5E

0

t1 /T

dy1E
0

y1
dy2R1~y1 ,y2!Dg1~y1 ,y2!,

I 2
~2!~ t1 /t2!5E

0

t1 /T

dy1E
0

t2 /T

dy2R2~y1 ,y2!Dg2~y1 ,y2!,

where sinceT@t0 , the lower limits can be set to zero. Afte
making the change of variablesy25y1z one finds that one
can perform the integral overy1 to obtain

I 1
~2!~ t1 /T!5

2

d
@Jd~ t1 /T!2Kd~ t1 /T!#, ~178!

where

Jd~ t1 /T!5E
0

t1 /T

dz
zd/221

@~11z!2~22z!#d/2
, ~179!

Kd~ t1 /T!5E
0

t1 /T

dz
zd/221

@~11z!~32z!#d/2
, ~180!

I 2
~2!~ t1 /T!5

2

d FLd~ t1 /t2!1Ld~ t1 /t2!2
2

3d/2
MdG ,

~181!

and

Ld~ t1 /t2!5E
0

t1 /t2
dz

zd/221

F ~11z!2S 32
t2

T
~11z! D Gd/2 .

~182!

Notice that at equal times,Kd(1)5Kd , Ld(1)5Jd(1), and
all of these integrals are well behaved.

There is one last regularization that must be carried
before the perturbation theory expression for the correla
function can be used for all values of the parameters. C
sider thatW can be written as the sum of three terms:

W~1!~x,t1 /t2!5 1
2 E

0

t1 /T

dy1E
0

y1
dy2R1~y1 ,y2!

3@e2 ~1/2! Dg1x2
21#,
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W~1!~x,t2 /t1!5 1
2 E

0

t2 /T

dy1E
0

y1
dy2R1~y1 ,y2!

3@e2 ~1/2! Dg1x2
21#,

W~2!~x,t1 /t2!5 1
6 E

0

t1 /T

dy1E
0

t2 /T

dy2R2~y1 ,y2!

3@e2 ~1/2! Dg2x2
21#.

In W(1)(x,t1 /t2) let y25y1z, which leads to the result

W~1!~x,t1 /t2!5 1
2 E

0

t1 /Tdy1

y1

3E
0

1

dz
zd/221

$~11z!@32z2y1~12z!2#%d/2

3@exp2
1
2 x2

y1~12z!2

~32z2y1~12z!2!21#. ~183!

Notice in this integral that there is an apparent log div
gence for smally1 which is canceled between the expone
tial term and the subtraction term. Note that the log ter
survives ifx is large enough. To pick out the log term we c
expand about smally1 except for the contributionx2y1 and
write

W~1!~x,t1 /t2!5 1
2 E

0

t1 /Tdy1

y1
E

0

1

dz
zd/221

@~11z!~32z!#d/2

3FexpS 2 1
2 x2

y1~12z!2

~32z! D21G
1DW~1!~x,t1 /t2!,

whereDW(1)(x,t1 /t2) has no singularity for largex. If we
now make the change of variables

y15
t1s

T~11x2!
, ~184!

in the leading integral we obtain

W~1!~x,t1 /t2!5
1

2E0

11x2ds

s E
0

1

dz
zd/221

@~11z!~32z!#d/2

3Fexp2
1

2

x2

11x2

t1

T

s~12z!2

~32z!
21G1•••,

where the••• refer to contributions which are regular. Th
integral overs can be divided into a regular part from 0 to
and the singular part for largex given by
-
-
s

W~1!~x,t1 /t2!5
1

2E1

11x2ds

s E0

1

dz
zd/221

@~11z!~32z!#d/2

3FexpS 2 1
2

x2

11x2

t1

T

s~12z!2

~32z! D 21G
1•••,

The singular part is now isolated in the second piece t
does not have exponential convergence for larges. We have
then

W~1!~x,t1 /t2!52 1
2 Kdln~11x2!1•••. ~185!

Clearly,

W~1!~x,t2 /t1!52 1
2 Kdln~11x2!1•••. ~186!

Turning to the third contribution, we again isolate the sm
y1 andy2 behaviors, and expanding inx2 in places which do
not contribute to the singularity gives

W~2!~x,t1 /t2!5
1

6E0

t1 /T

dy1E
0

t2 /T

dy2

y1
d/221y2

d/221

~y11y2!d

1

3d/2

3@exp2~1/6!x2~y11y2!21#1•••.

Next make the coordinate transformations

y15
s1t1

T~11x2!
, ~187!

y25
s2t2

T~11x2!
, ~188!

which results in the leading contribution to the integral

W~2!~x,t1 /t2!5
1

2~3!d/211E0

11x2

ds1E
0

11x2

ds2

s1
d/221s2

d/221

~s11s2!d

3 FexpF2
1
6

x2

11x2 S s1t1
T 1

s2t2
T D G21G1•••.

Again, the leading behavior for largex comes from terms
which do not have exponential convergence for larges1 and
s2 :

W~2!~x,t1 /t2!52
1

23d/211E0

11x2

ds1

3E
0

11x2

ds2

s1
d/221s2

d/221

~s11s2!d
1•••.

If we let s1→1/s1 ands2→1/s2 then this integral takes the
form
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W~2!~x,t1 /t2!52
1

23d/211E1/~11x2!

1

ds1

3E
1/~11x2!

1

ds2

s1
d/221s2

d/221

~s11s2!d
1•••.

This integral was evaluated in our treatment ofF with the
result

W~2!~x,t1 /t2!52
1

23d/211
2MdlnF11x2

2 G1•••,

Then to leading order for largex we have

W~x,t1 /t2!52Kdln~11x2!2
1

3d/211
MdlnF11x2

2 G1•••.

The scaled correlation function then has the form

f ~x,t1 /t2!5 f 0~x!F12v22d11S Kd1
Md

3d/211D ln~11x2!G
3@11•••#. ~189!

This can be exponentiated to obtain

f ~x,t1 /t2!5
f 0~x!

~11x2!nm/2
@11•••#, ~190!

where the exponent governing the largex behavior is given
by

nm5v22d11S Kd1
Md

3d/211D . ~191!

X. ORDER PARAMETER CORRELATION FUNCTION

A. Perturbation expansion

We turn next to the connection between the correlat
function for the auxiliary fieldm and the order paramete
correlation function. If we look at the problem using th
transformation given by Eq.~28!, we have

C~12!5^c~1!c~2!&

5^s~1!s~2!&1^s~1!u~2!&

1^u~1!s~2!&1^u~1!u~2!&.

The key point is that sinceu(1) vanishes exponentially fo
large um(1)u, the averages over these fields are down b
factor of L22 relative to the averages over the fields(1).
Thus ^s(1)s(2)&'O(1) as L(t)→`, while ^s(1)u(2)&
and^u(1)s(2)& are ofO(L22) and^u(1)u(2)& of O(L24).
In the scaling regime we have

C~12!5^s~1!s~2!&. ~192!

This quantity can be evaluated using the two-point proba
ity distribution
n

a

l-

Ph~x1x2,1,2!5^d„x12m~1!…d„x22m~2!…&h ~193!

and the correlation functions are obtained at zero exte
field via

C~12!5E dx1E dx2s~x1!s~x2!P0~x1x2,12!. ~194!

More generally, we can treat the set of correlation functio

Cnl ~12!5^sn~1!s l ~2!&

5E dx1E dx2sn~x1!s l ~x2!P0~x1x2,12!.

Since we have computed the auxiliary-field correlation fun
tions toO(2), wealso need to determineCnl (12) to second
order. This expansion can be developed as follows. As in
case of the one-point quantityPh(x1,1), we again use the
integral representation for thed function to obtain

Ph~x1 ,x2,12!5E dk1

2p E dk2

2p
e2 ik1x1e2 ik2x2^eH~12!&h

whereH(12)[ ik1m(1)1 ik2m(2). Theaverage of the ex-
ponential is precisely of the form which can be rewritten
terms of cumulants:

^eH~12!&h5expF (
n51

`
1

n!
GH

~n!~12!G , ~195!

where GH
(n)(12) is the nth-order cumulant for the field

H(12). These cumulants can all be expressed in terms of
m-field cumulants. In this section we can work directly
terms of zero external fields, where all oddm-field cumulants
vanish. Here we will need

GH
~2!~12!5~ ik1!2G2~11!1~ ik2!2G2~22!

12~ ik1!~ ik2!G2~12!,

GH
~4!~12!5~ ik1!4G4~1111!14~ ik1!3~ ik1!G4~1112!

16~ ik1!2~ ik2!2G4~1122!

14~ ik1!~ ik2!3G4~1222!1~ ik2!4G4~2222!,

and

GH
~6!~12!5~ ik1!6G6~111111!

16~ ik1!5~ ik2!G6~111112!

115~ ik1!4~ ik2!2G6~111122!

120~ ik1!3~ ik2!3G6~111222!

115~ ik1!2~ ik2!4G6~112222!

16~ ik1!~ ik2!5G6~122222!

1~ ik2!6G6~222222!.

Working to second order in thef expansion requires keepin
terms
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^eH~12!&5F0~k1 ,k2,12!

3F11
1

4!
GH

~4!1
1

2 S 1

4!
GH

~4!D 2

1
1

6!
GH

~6!
••• G

~196!

where in zero external fieldF0(k1 ,k2,12) is given by

F0~k1k2,12!5exp2 1
2 [k1

2G2~11!1k2
2G2~22!

12k1k2G2~12!]. ~197!

B. Terms of O„1…

Let us look first at the theory keeping terms up toO(1).
It is then straightforward to show that the two-point probab
ity distribution is given by

P0~x1 ,x2 ;12!5F11
1

4!S G4~1111!
d4

dx1
4

14G4~1112!

3
d3

dx1
3

d

dx2
16G4~1122!

d2

dx1
2

d2

dx2
2

14G4~1222!
d

dx1

d3

dx2
3

1G4~2222!
d4

dx2
4D G

3P0
~0!~x1 ,x2 ;12!, ~198!

whereP0
(0)(x1 ,x2 ;12) is given by

P0
~0!~x1x2,12!

5
1

2p

g~12!

AS2~1!S2~2!

3expF2
g2~12!

2S2~1!S2~2!
[x1

2S2~2!1x2
2S2~1!

22G2~12!x1x2] G , ~199!

g~12!5
1

A12 f 2~12!
, ~200!

and

f ~12!5
G2~12!

AS2~1!S2~2!
. ~201!

Notice that we already have one resummation here since
the full G2 which appears inP0

(0)(x1x2,12). The general se
of two-point order parameter correlation functions are giv
up to O(1), by

Cnl ~12!5Cnl
~0!~12!1Cnl

~1!~12!•••, ~202!

where the first-order correction to the leading Gaussian
havior is given explicitly by
-

is

,

e-

Cnl
~1!~12!5

1

4!
G4

~1!~1111!Cn14,l
~0! ~12!

1
1

3!
G4

~1!~1112!Cn13,l 11
~0! ~12!

1
1

4
G4

~1!~1122!Cn12,l 12
~0! ~12!

1
1

3!
G4

~1!~1222!Cn11,l 13
~0! ~12!

1
1

4!
G4

~1!~2222!Cn,l 14
~0! ~12!,

where we remember thatCnl
(0)(12) is a known functional of

the exactG2(12), and that theG4’s are also the exact quan
tities. ThusCnl

(0)(12) andCnl
(1)(12) both contain contributions

of O(2).
Thus determining theCnl to first order requires first de

termining G2 to first order, then evaluating theCnl
(0)(12) as

functions of G2 , and finally the evaluation of the variou
two-point contractions ofG4(1234) evaluated at first order
We have already evaluatedG2

(0) and we have the appropriat
first-order expression forG4(1234). Notice that it is the
same set of contracted four-point quantities which enter i
the determination of any setn,l . Let us restrict our subse
quent analysis to the correlation functionsC00(12). The first-
order correction to the leading Gaussian result

C00
~0!~12!5

2

p
c0

2sin21f ~12! ~203!

is given by

C00
~1!~12!5

1

4!
G4

~1!~1111!C4,0
~0!~12!1

1

3!
G4

~1!~1112!C3,1
~0!~12!

1
1

4
G4

~1!~1122!C2,2
~0!~12!1

1

3!
G4

~1!~1222!

3C1,3
~0!~12!1

1

4!
G4

~1!~2222!C0,4
~0!~12!. ~204!

The zeroth-order correlation functionsCn,l
(0) (12) can be

evaluated using the identities

Cn11,l 11
~0! ~12!5

]

]G2~12!
Cn,l

~0! ~12! ~205!

and

Cn12,l
~0! ~12!52

]

]S2~1!
Cn,l

~0! ~12! ~206!

derived in the TUG. Starting with the expression f
C0,0

(0)(12) given by Eq.~203!, all of the other quantities can
be calculated by taking derivatives. A summary of the resu
we need forC0,0

(1)(12) is given by
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C40
~0!~12!5

2

p

c0
2

S2
2~1!

g3f ~322 f 2!, ~207!

C31
~0!~12!52

2

p

c0
2

S2
3/2~1!S2

1/2~2!
g3, ~208!

C22
~0!~12!5

2

p

c0
2

S2~1!S2~2!
g3f . ~209!

Next we need the various contracted four-point cumula
appearing in Eq.~204!. These can all be evaluated using E
~158!. First we have the fully contracted four-point cumula

G4
~0!~1111!524v2dS2

2~1!Ld , ~210!
e
ion
ts
.
t

where

Ld5E
0

1

dy
yd/221

@~22y!~11y!2#d/2
~211!

is the equal-time limit ofLd(t1 /t2) defined by Eq.~182!.
Next we have

G4
~0!~1122!522v2dS2~1!S2~2!

3@jd/2W3~x1 ,j!1j2d/2W3~x2 ,j21!#,

~212!

where
W3~x1 ,j!5E
0

1

dy
yd/221

$~j1y!@11j1y~12y!#%d/2
e2 ~1/2! x1

2g̃0~j,y!,

j5
t2

t1
, x1

25r 2/~4t1!,

and

g̃0~j,y!5
4

11j1y~12y!
.

Finally we need

G4
~0!~1112!52v2dS2~1!S2~2!jd/421/2@3W1~x1 ,j!1W2~x1 ,j!#, ~213!

W1~x1 ,j!5E
0

1

dy yd/221F 2

~11y!@113j1y~32j!22y2#
G d/2

e2 ~1/2! x1
2g̃2~j,y!, ~214!

W2~x1 ,j!5E
0

j

dy yd/221F 2

~11y!2~113j22y!
G d/2

e2 ~1/2! x1
2g̃2~j,y!,

g̃1~j,y!5
6

113j22y
,

site
and

g̃2~j,y!5
4~11j!

@113j1y~32j!22y2#
.

Note the check on Eqs.~212! and ~213! that they reduce to
Eq. ~210! as 2→1. Pulling all of these results together, w
have theO(1) corrections to the order-parameter correlat
function
C0,0
~1!~12!5

v2dg3

3p
$22Ldf ~322 f 2!

1jd/4@3W1~x1 ,j!1W2~x1 ,j!#

1j2d/4@3W1~x2 ,j21!1W2~x2 ,j21!#

23jd/2f W3~x1 ,j!23j2d/2f W3~x2 ,j21!%.

~215!

There are several limits of interest. First consider the on-
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unequal-timet1@t2 limit, which gives the nonequilibrium
exponentl. In this limit f is small, and has the form for larg
j given by Eq.~145! which, in our notation here, reads

f 5Af
~0!j2d/4, ~216!

whereAf
(0)52d/2 at lowest order. Similarly the zeroth-orde

order parameter correlation function has the form

C~0!~0,t1 ,t2!5
2

p
c0

2Af
~0!j2d/4. ~217!

Second-order contributions tof change the exponentl from
d/2 to the expression given by Eq.~13!. Do the new first-
order terms give contributions which changel at first order?
To answer this question we need to setr 50 and takej large
in C0,0

(1)(12). The main results we need for largej are

W1~0,j!5j2d/2q1~d!,

W2~0,j!5j2d/2q0~d!,

W1~0,j21!5q2~d!,

W2~0,j21!5
4

d
dd/2j2d/2,

W3~0,j!5
2

d
j2d,

W3~0,j21!5@ lnj1q3~d!#,

with the dimensionality dependent quantities defined by

q0~d!5S 2

3D d/2G2~d/2!

G~d!
,

q1~d!5E
0

1

dy yd/221F 2

~11y!~32y!G
d/2

52d/2Kd ,

q2~d!5E
0

1

dy yd/221F 2

~11y!~113y22y2!
G d/2

.

We see then that these contributions do not contribute te
to the exponentl at first order. One has only a contributio
to the amplitude

C~1!~0,t1 ,t2!5
v2d

3p
j2d/4

3@26 f 0Ld13q1~d!1q0~d!13q2~d!#.

For equal timest15t25t and j51, the expression for
C00

(1)(12) simplifies significantly. All of theW’s share the

same integrand except for theg̃’s multiplying x2 in the ar-
gument of the exponential. After considerable manipulat
we have
s

n

C0,0
~1!~12!5

v2dg3

3p E
0

1

dy
yd/221

@~22y!~11y!2#d/2

3@22e2 ~1/2! x2
~322 f 2!12e2 ~1/2! x2g̃1~1,y!

16~12 f !e2 ~1/2! x2g̃0~1,y!#. ~218!

For largex one has, sinceg̃0(1,y).1, g̃1(1,y).1, that only
the fully contracted four-point cumulant contributes and

C0,0
~1!~12!5

v2d

3p
~26Ld! f ~12!, ~219!

which does not give a first-order contribution to the expon
n.

The last point to be discussed in theO(1) evaluation of
the order parameter correlation function is that one mus
careful about the behavior at short-scaled distances at e
times. Let us write

C0,0
~1!~12!5g3D~x! , ~220!

whereD(x) can be read off from Eq.~218!. Then for smallx
we see thatD(x) goes to zero asx2,, while g3 blows up as
1/x3. Such singularities are unphysical, and indicate that
are expanding about a singular order parameter interfa
profile in this regime. It is just these singularities which gi
rise to Porod’s law. One possible resummation is

F~x!5
2

p
sin21F f ~x!2

p

2

D~x!

q0
G

2
p

2q0
D~x!

1

A12 f ~x!214q0 /p
~221!

and a reasonable choice forq0 is q0
25D( x̄), wherex̄ is some

renormalization point chosen such that the scaling functio
smooth.

We can then conclude that the first-order correction to
order parameter correlation function do not lead to corr
tions to the exponentsl andn. Thus, toO(1), G2(12) and
C(12) share the same OJK exponents.

C. Terms of O„2…

Turning to the more involved case of the terms ofO(2)
contributions toC(12), we find four types of terms. Ther
are the terms inG2(12) which are ofO(2) which must be
included in the contribution given by Eq.~203! and which
have already been evaluated. Inserting these results forf into
Eq. ~203! we find, sincef is small in the regime controlled by
n andl, that the order parameter correlation function pic
up the same corrections leading tolm and nm . Let us turn
now to the other three contributions.

~i! One has terms ofO(2) from Eq.~204! where the lead-
ing orderG4

(1) contributions are replaced by their next-ord
correctionsG4

(2) .
~ii ! The leadingG6 contribution in Eq.~196! is of O(2),

and contributes toC(2)(12).
~iii ! The term (GH

(4))2 in Eq. ~196! is also ofO(2).
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Just as in Eq.~198!, the factors ofki in Eq. ~196! just lead
to higher-order subscripts in the multiplicative factors
Cn,l

(0) (12). Thus inC(2)(12) there are contributions of th
form

E dx1s~x1!E dx2s~x2!E dk1

2p

dk2

2p
e2 ik1x1e2 ik2x2

3
20

6!
~ ik1!3~ ik2!3G6~111222!

5C3,3
~0!~12!

20

6!
G6~111222!

and

E dx1s~x1!E dx2s~x2!E dk1

2p

dk2

2p
e2 ik1x1e2 ik2x2

3
1

2S 6~ ik1!2~ ik2!2

4! D 2

G4
2~1122!

5C4,4
~0!~12!

36

2~4! !2
G4

2~1122!.

While there are a great many terms to be analyzed from
three sets of contributions, none appear to give correction
the exponentsl andn. Thus it appears toO(2) thatl5lm
andn5nm .

XI. EQUATION OF MOTION CONSIDERATIONS

In Sec. X we determined the order parameter correla
function by relating it to the auxiliary-field correlation func
f

ll
to

n

tion. It is also instructive to consider using equation of m
tion methods for determining the order parameter sca
function as in Ref.@3#. Let us return to the equation of mo
tion for the order parameter given by Eq.~39!. We will limit
the discussion for simplicity to the case of equal times wh
the equation of motion for the order-parameter correlat
function can be written

S ]

]t
22¹R

2 DC~RW ,t !522^s2~1!„¹m~1!…2s~2!&

[22K~12!. ~222!

Assuming we have a scaling solutionC(RW ,t)5F(x), we
easily find that the equation of motion takes the form

xW•¹F~x!1¹2F~x!5L2K~12!. ~223!

We can then focus onK(12). At leading order, it is easy to
show thatK(12) can be written in terms of the two-poin
probability distribution as

K~12!5^„¹m~1!…2&C20~12!1K̄ ~0!~12!, ~224!

where C20(12) can be evaluated using Eq.~203! in Eq.
~206!:

C20
~0!~12!52

2

p„S2
~0!~1!…2

f ~x!g~x!. ~225!

At lowest order we can also evaluate
K̄ ~0!~12!5F¹ i
~3!¹ i

~4!E dx1E dx2s2~x1!s~x2!
d2

dh~3!dh~4!
Ph~x1x2,12!GU

35451,h50

5„¹ i
~3!¹ i

~4!$G2
~0!~13!2

~0!~14!C40~12!1G2
~0!~23!G2

~0!~24!C22~12!

1@G2
~0!~13!G2

~0!~24!1G2
~0!~23!G2

~0!~14!#C32~12!%…u35451 .
Since

„¹ i
~3!G2

~0!~13!…u3515„¹ i
~4!G2

~0!~14!…u45150,

we find

K̄ ~0!~12!5„¹ i
~1!G2

~0!~12!…2C22~12!. ~226!

Putting these results together, using Eq.~209!,

f ~x!g~x!5tanFp2 F~x!G ~227!

and
¹xF~x!5
2

p
g~x!¹xf ~x!, ~228!

we obtain the scaling equation

xW•¹F~x!1¹2F~x!1tanFp2 F~x!GF 1

m
2

p

2
„¹xF~x!…2G50,

~229!

where

p

2m
5

L2^~¹m!2&0

S2
~0!

. ~230!
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Analyzing Eq.~229!, however, one finds the remarkable r
sult that there is an analytical solution given by

F5
2

p
sin21 @e2 x2/2# ~231!

with m given by the OJK resultm5 p/2d. Thus the equation
of motion method gives the same result as the method
evaluatingCc(12) directly. This lends strong support to th
structure of the approach.

One interesting question concerns the work here co
pared to that in the TUG. If one makes the replacement

1

m
2

p

2
~¹F !2→

1

m
~232!

in Eq. ~229!, one obtains the basic equation in the TU
approach wherem must then be determined as the solution
a nonlinear eigenvalue problem. Given the selectedm* , one
then has the analytic resultsl5d2 (p/4m* ) and n5d
2 (p/2m* ). In the TUG approachl andn are not indepen-
dent (n52l2d). The TUG results forl andn as functions
of d are shown in Tables I and II. It seems clear that the TU
values for l and n are superior to those of the prese
second-order theory. In particular, the TUG approach gi
the known exact results in one dimension. Clearly the beh
ior of n with d is different in the two approximations with th
TUG giving n→0 and the current theory givingn→` asd
increases. Thus the TUG results are in agreement with
speculation of Bray and Humayun that larged corresponds to
the OJK limit.

It should be kept in mind that while the TUG approa
does well in giving these exponents, it is deficient in treat
the smoothness of the auxiliary-field correlation functi
which enters into the determination of defect dynamics. T
present theory gives good results for the exponents-the
rections to OJK all appear to be in the right direction, a
give the auxiliary-field correlation functions which a
smooth.

XII. CONCLUSIONS

The key accomplishment in this paper is to show how o
can set up a systematic calculation which allows for b
nontrivial nonequilibrium exponentsl andn, and results for
the auxiliary-field correlation function which are smoo
enough to offer physical results for defect structures. T
structure of the theory presented here is appealing since
deviation from the OJK results can be handled pertur
tively, and one can see and control the post-Gaussian co
tions.

The key question remaining is the uniqueness of
theory developed here. While it seems that there is a de
of universality in this problem, the answer to the quest
posed involves the robust nature of this universality. T
can be investigated by looking at those changes in the e
tion of motion for the auxiliary field which may change sca
ing results. Thus one can try to find marginal variables wh
could lead to exponents which depend on a paramete
of
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seems reasonable that the uniqueness of the particular
ization of the theory presented here can be investiga
within its own structure.

It is clear that one can introduce more sophisticated
summation methods than the direct method used here. T
methods could be useful, for example, in establishing
connection between the exponents governing the statistic
the auxiliary field and those governing the statistics of
order parameter field. While these are equal atO(2), it is not
at all obvious that this holds at higher order. It will be inte
esting to see if one can formulate alternatives to and res
mations of thefp expansion developed here. For example
seems to desirable to find an expansion, as in the TU
which matches the exact solution ford51.

In the second paper in this series the theory is extende
then-vector model. It will turn out, at least atO(2), that the
f expansion is related to a largen expansion. The main
focus of this second paper will be to look at the determin
tion of defect spatial and velocity correlations.
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APPENDIX: SOLUTION FOR S2
„0…

„T…

In this appendix we present the solution to the equatio

S2
~0!~ t !5expS 2v̄E

t0

t dt

S2
~0!~t !

D S2
~0!~ t0!

Qd/2~ t !
,

where

Q~ t !511a~ t2t0!.

Cross multiply byQd/2(t), and take the time derivative, t
obtain the rather simple equation

Ṡ2
~0!~ t !1

da

2

S2
~0!~ t !

Q~ t !
52v̄.

Introducing the integrating factor

S2
~0!~ t !5expS 2

d

2Et0

t

dt
a

Q~t! DX~ t !,

where

Ẋ~ t !5expS d

2Et0

t

dt
a

Q~t! D 2v̄.
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This is easily integrated to obtain

X~t!5S2
~0!~t0!12v̄E

t0

t

dt̄ expS d

2Et0

t̄
dt

a

Q~t! D .

We can then do the integral
t

en
E
t0

t

dt
a

Q~t!
5aE

t0

t

dt
d

dt
ln @11a~t2t0!#

5 ln @11a~ t2t0!#.

This result is then inserted in the integrating factor and
remaining integral overt̄ can easily be carried out to obtai
the result given by Eq.~134!.
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